Cargando…

Measuring the functional sequence complexity of proteins

BACKGROUND: Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence...

Descripción completa

Detalles Bibliográficos
Autores principales: Durston, Kirk K, Chiu, David KY, Abel, David L, Trevors, Jack T
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217542/
https://www.ncbi.nlm.nih.gov/pubmed/18062814
http://dx.doi.org/10.1186/1742-4682-4-47
Descripción
Sumario:BACKGROUND: Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity. METHODS AND RESULTS: We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain. CONCLUSION: For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.