Cargando…
Modeling SAGE tag formation and its effects on data interpretation within a Bayesian framework
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a high-throughput method for inferring mRNA expression levels from the experimentally generated sequence based tags. Standard analyses of SAGE data, however, ignore the fact that the probability of generating an observable tag varies across ge...
Autores principales: | Gilchrist, Michael A, Qin, Hong, Zaretzki, Russell |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217564/ https://www.ncbi.nlm.nih.gov/pubmed/17945026 http://dx.doi.org/10.1186/1471-2105-8-403 |
Ejemplares similares
-
Bias correction and Bayesian analysis of aggregate counts in SAGE libraries
por: Zaretzki, Russell L, et al.
Publicado: (2010) -
Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE)
por: Vêncio, Ricardo ZN, et al.
Publicado: (2004) -
An intuitive framework for Bayesian posterior simulation methods
por: Bidhendi Yarandi, Razieh, et al.
Publicado: (2021) -
SAGE2Splice: Unmapped SAGE Tags Reveal Novel Splice Junctions
por: Kuo, Byron Yu-Lin, et al.
Publicado: (2006) -
Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips
por: van Ruissen, Fred, et al.
Publicado: (2005)