Cargando…
Interactions of divalent cations with single calcium channels from rat brain synaptosomes
Voltage-dependent calcium channels from a rat brain membrane preparation ("synaptosomes") were incorporated into planar lipid bilayers. The effects of calcium, barium, strontium, manganese, and cadmium ions on the amplitudes and kinetics of single channel currents were examined. The order...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217603/ https://www.ncbi.nlm.nih.gov/pubmed/2419482 |
_version_ | 1782149287479607296 |
---|---|
author | Nelson, MT |
author_facet | Nelson, MT |
author_sort | Nelson, MT |
collection | PubMed |
description | Voltage-dependent calcium channels from a rat brain membrane preparation ("synaptosomes") were incorporated into planar lipid bilayers. The effects of calcium, barium, strontium, manganese, and cadmium ions on the amplitudes and kinetics of single channel currents were examined. The order of single channel conductances was gBa greater than gSr greater than gMn, which was the inverse of the order of the mean channel open times: TMn greater than TCa = TSr greater than TBa. In contrast, the identity of the charge carrier had little or no effect on the mean closed times of the channel. Manganese, in the absence of other permeant ions, can pass through single channels (gMn = 4 pS). However, when added to a solution that contained another type of permeant divalent cation, manganese reduced the single channel current in a voltage-dependent manner. Cadmium, a potent blocker of macroscopic "ensemble" calcium currents in many preparations, reduced the current through an open channel in a manner consistent with Cd ions both not being measurably permeant and interacting with a single site. The permeant ions competed with cadmium for this site with the following order: Mn greater than Sr = Ca greater than Ba. These results are consistent with the existence of no less than one divalent cation binding site in the channel that regulates ion permeation. |
format | Text |
id | pubmed-2217603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22176032008-04-23 Interactions of divalent cations with single calcium channels from rat brain synaptosomes Nelson, MT J Gen Physiol Articles Voltage-dependent calcium channels from a rat brain membrane preparation ("synaptosomes") were incorporated into planar lipid bilayers. The effects of calcium, barium, strontium, manganese, and cadmium ions on the amplitudes and kinetics of single channel currents were examined. The order of single channel conductances was gBa greater than gSr greater than gMn, which was the inverse of the order of the mean channel open times: TMn greater than TCa = TSr greater than TBa. In contrast, the identity of the charge carrier had little or no effect on the mean closed times of the channel. Manganese, in the absence of other permeant ions, can pass through single channels (gMn = 4 pS). However, when added to a solution that contained another type of permeant divalent cation, manganese reduced the single channel current in a voltage-dependent manner. Cadmium, a potent blocker of macroscopic "ensemble" calcium currents in many preparations, reduced the current through an open channel in a manner consistent with Cd ions both not being measurably permeant and interacting with a single site. The permeant ions competed with cadmium for this site with the following order: Mn greater than Sr = Ca greater than Ba. These results are consistent with the existence of no less than one divalent cation binding site in the channel that regulates ion permeation. The Rockefeller University Press 1986-02-01 /pmc/articles/PMC2217603/ /pubmed/2419482 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Nelson, MT Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title | Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title_full | Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title_fullStr | Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title_full_unstemmed | Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title_short | Interactions of divalent cations with single calcium channels from rat brain synaptosomes |
title_sort | interactions of divalent cations with single calcium channels from rat brain synaptosomes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217603/ https://www.ncbi.nlm.nih.gov/pubmed/2419482 |
work_keys_str_mv | AT nelsonmt interactionsofdivalentcationswithsinglecalciumchannelsfromratbrainsynaptosomes |