Cargando…
GO for gene documents
BACKGROUND: Annotating genes and their products with Gene Ontology codes is an important area of research. One approach is to use the information available about these genes in the biomedical literature. The goal in this paper, based on this approach, is to develop automatic annotation methods that...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217661/ https://www.ncbi.nlm.nih.gov/pubmed/18047704 http://dx.doi.org/10.1186/1471-2105-8-S9-S3 |
_version_ | 1782149295145746432 |
---|---|
author | Srinivasan, Padmini Qiu, Xin Ying |
author_facet | Srinivasan, Padmini Qiu, Xin Ying |
author_sort | Srinivasan, Padmini |
collection | PubMed |
description | BACKGROUND: Annotating genes and their products with Gene Ontology codes is an important area of research. One approach is to use the information available about these genes in the biomedical literature. The goal in this paper, based on this approach, is to develop automatic annotation methods that can supplement the expensive manual annotation processes currently in place. RESULTS: Using a set of Support Vector Machines (SVM) classifiers we were able to achieve Fscores of 0.49, 0.41 and 0.33 for codes of the molecular function, cellular component and biological process GO hierarchies respectively. We find that alternative term weighting strategies are not different from each other in performance and feature selection strategies reduce performance. The best thresholding strategy is one where a single threshold is picked for each hierarchy. Hierarchy level is important especially for molecular function and biological process. The cellular component hierarchy stands apart from the other two in many respects. This may be due to fundamental differences in link semantics. This research shows that it is possible to beneficially exploit the hierarchical structures by defining and testing a relaxed criteria for classification correctness. Finally it is possible to build classifiers for codes with very few associated documents but as expected a huge penalty is paid in performance. CONCLUSION: The GO annotation problem is complex. Several key observations have been made as for example about topic drift that may be important to consider in annotation strategies. |
format | Text |
id | pubmed-2217661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22176612008-01-31 GO for gene documents Srinivasan, Padmini Qiu, Xin Ying BMC Bioinformatics Proceedings BACKGROUND: Annotating genes and their products with Gene Ontology codes is an important area of research. One approach is to use the information available about these genes in the biomedical literature. The goal in this paper, based on this approach, is to develop automatic annotation methods that can supplement the expensive manual annotation processes currently in place. RESULTS: Using a set of Support Vector Machines (SVM) classifiers we were able to achieve Fscores of 0.49, 0.41 and 0.33 for codes of the molecular function, cellular component and biological process GO hierarchies respectively. We find that alternative term weighting strategies are not different from each other in performance and feature selection strategies reduce performance. The best thresholding strategy is one where a single threshold is picked for each hierarchy. Hierarchy level is important especially for molecular function and biological process. The cellular component hierarchy stands apart from the other two in many respects. This may be due to fundamental differences in link semantics. This research shows that it is possible to beneficially exploit the hierarchical structures by defining and testing a relaxed criteria for classification correctness. Finally it is possible to build classifiers for codes with very few associated documents but as expected a huge penalty is paid in performance. CONCLUSION: The GO annotation problem is complex. Several key observations have been made as for example about topic drift that may be important to consider in annotation strategies. BioMed Central 2007-11-27 /pmc/articles/PMC2217661/ /pubmed/18047704 http://dx.doi.org/10.1186/1471-2105-8-S9-S3 Text en Copyright © 2007 Srinivasan and Qiu; licensee BioMed Central Ltd. |
spellingShingle | Proceedings Srinivasan, Padmini Qiu, Xin Ying GO for gene documents |
title | GO for gene documents |
title_full | GO for gene documents |
title_fullStr | GO for gene documents |
title_full_unstemmed | GO for gene documents |
title_short | GO for gene documents |
title_sort | go for gene documents |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217661/ https://www.ncbi.nlm.nih.gov/pubmed/18047704 http://dx.doi.org/10.1186/1471-2105-8-S9-S3 |
work_keys_str_mv | AT srinivasanpadmini goforgenedocuments AT qiuxinying goforgenedocuments |