Cargando…
A comparison study on algorithms of detecting long forms for short forms in biomedical text
MOTIVATION: With more and more research dedicated to literature mining in the biomedical domain, more and more systems are available for people to choose from when building literature mining applications. In this study, we focus on one specific kind of literature mining task, i.e., detecting definit...
Autores principales: | Torii, Manabu, Hu, Zhang-zhi, Song, Min, Wu, Cathy H, Liu, Hongfang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217663/ https://www.ncbi.nlm.nih.gov/pubmed/18047706 http://dx.doi.org/10.1186/1471-2105-8-S9-S5 |
Ejemplares similares
-
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009) -
Detecting concept mentions in biomedical text using hidden Markov model: multiple concept types at once or one at a time?
por: Torii, Manabu, et al.
Publicado: (2014) -
Protein Function Prediction using Text-based Features extracted from the Biomedical Literature: The CAFA Challenge
por: Wong, Andrew, et al.
Publicado: (2013) -
Comparison of concept recognizers for building the Open Biomedical Annotator
por: Shah, Nigam H, et al.
Publicado: (2009) -
BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data
por: Sun, Peng, et al.
Publicado: (2013)