Cargando…
Extracting unrecognized gene relationships from the biomedical literature via matrix factorizations
BACKGROUND: The construction of literature-based networks of gene-gene interactions is one of the most important applications of text mining in bioinformatics. Extracting potential gene relationships from the biomedical literature may be helpful in building biological hypotheses that can be explored...
Autores principales: | Kim, Hyunsoo, Park, Haesun, Drake, Barry L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217664/ https://www.ncbi.nlm.nih.gov/pubmed/18047707 http://dx.doi.org/10.1186/1471-2105-8-S9-S6 |
Ejemplares similares
-
Extracting unrecognized gene relationships from the biomedical literature via matrix factorizations
por: Kim, Hyunsoo, et al.
Publicado: (2008) -
Hierarchical community detection via rank-2 symmetric nonnegative matrix factorization
por: Du, Rundong, et al.
Publicado: (2017) -
HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2009) -
Automated extraction and semantic analysis of mutation impacts from the biomedical literature
por: Naderi, Nona, et al.
Publicado: (2012) -
Protein Function Prediction using Text-based Features extracted from the Biomedical Literature: The CAFA Challenge
por: Wong, Andrew, et al.
Publicado: (2013)