Cargando…
Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance
Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to intr...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1992
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219206/ https://www.ncbi.nlm.nih.gov/pubmed/1375958 |
_version_ | 1782149299933544448 |
---|---|
collection | PubMed |
description | Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was insensitive to propranolol or ACh, but could still be abolished by pipette application of PKI. The data indicate that stimulation of beta-adrenergic or histaminergic receptors in the presence of nonhydrolyzable GTP analogues causes persistent activation of Gs and uncouples it from the receptors. We conclude that autonomic regulation of cardiac Cl- conductance reflects accurately the underlying modulation of adenylyl cyclase activity and, hence, that this system is a suitable mammalian model for in situ studies of the interactions between adenylyl cyclase, Gs, Gi, and forskolin. |
format | Text |
id | pubmed-2219206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1992 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22192062008-04-23 Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance J Gen Physiol Articles Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was insensitive to propranolol or ACh, but could still be abolished by pipette application of PKI. The data indicate that stimulation of beta-adrenergic or histaminergic receptors in the presence of nonhydrolyzable GTP analogues causes persistent activation of Gs and uncouples it from the receptors. We conclude that autonomic regulation of cardiac Cl- conductance reflects accurately the underlying modulation of adenylyl cyclase activity and, hence, that this system is a suitable mammalian model for in situ studies of the interactions between adenylyl cyclase, Gs, Gi, and forskolin. The Rockefeller University Press 1992-04-01 /pmc/articles/PMC2219206/ /pubmed/1375958 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title | Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title_full | Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title_fullStr | Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title_full_unstemmed | Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title_short | Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance |
title_sort | role of gtp-binding proteins in the regulation of mammalian cardiac chloride conductance |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219206/ https://www.ncbi.nlm.nih.gov/pubmed/1375958 |