Cargando…
Effects of external pH on binding of external sulfate, 4.4-dinitro- stilbene-2,2'-disulfonate (DNDS), and chloride to the band 3 anion exchange protein
A model in which two positively-charged titratable sites enhance the affinity for anionic substrates can explain the increase in external iodide dissociation constant (K(O)(I)) with increasing pH(O) (Liu, S. J., F.-Y. Law, and P.A. Knauf. 1996.f Gen.Physiol. 107:271-291). If sulfate binds to the sam...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219265/ https://www.ncbi.nlm.nih.gov/pubmed/8833347 |
Sumario: | A model in which two positively-charged titratable sites enhance the affinity for anionic substrates can explain the increase in external iodide dissociation constant (K(O)(I)) with increasing pH(O) (Liu, S. J., F.-Y. Law, and P.A. Knauf. 1996.f Gen.Physiol. 107:271-291). If sulfate binds to the same external site as I-, this model predicts that the SO(4)= dissociation constant (K(O)(S)) should also increase. The data at pH 0 8.5 to 10 fit this prediction, and the pK for the titration is not significantly different from that (pKc) for the low-pK group that affects K(O)(1). The dissociation constant for the apparently competitive inhibitor, DNDS (4,4-dinitrostilbene-2,2'- disulfonate), also increases greatly as pH(O) increases. Particularly at high pH(O), a noncompetitive inhibition by DNDS is also evident. Increasing pH(O) from 7.2 to 11.2 increases the competitive dissociation constant by 700-fold, but the noncompetitive is only increased 20-fold. The pK values for these effects are similar to pKc for K(O)(1), as expected if DNDS binds near the external transport site, but it seems likely that additional titratable groups also affect DNDS binding. The apparent affinity for external Cl- is also affected by pH(O), in a manner similar to that observed for I-. Pretreatment with the amino-selective reagent, bis-sulfosuccinimidyl suberate (BSSS), decreases the apparent Cl- affinity at pH 8.5, but two titrations are still evident, the first (lower) of which decreases the apparent C- affinity, and the second of which surprisingly increases it. Thus, the BSSS-reactive amino groups (probably Lys-539 and Lys-851) do not seem to be involved in the titrations that affect Cl- affinity. In general, the data support the concept that a positively charged amino group (or groups), together with a guanidino group, plays an important role in the binding of substrates and inhibitors at or near the external transport site. |
---|