Cargando…

Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations

The receptor potential of rhabdomeric photoreceptors is mediated primarily by a Na influx, but other ions must also permeate through light-dependent channels to account for some properties of the photoresponse. We examined ion conduction in macroscopic and single- channel light-induced currents of L...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219392/
https://www.ncbi.nlm.nih.gov/pubmed/8783072
_version_ 1782149310700322816
collection PubMed
description The receptor potential of rhabdomeric photoreceptors is mediated primarily by a Na influx, but other ions must also permeate through light-dependent channels to account for some properties of the photoresponse. We examined ion conduction in macroscopic and single- channel light-induced currents of Lima and Pecten photoreceptors. In the absence of Na, a fivefold change in extracellular K shifted the reversal voltage of the photocurrent (Vrev) by approximately 27 mV. Because the dependency of Vrev on [K]o was sub-Nernstian, and Vrev in each condition was more positive than Ek, some other ion(s) with a positive equilibrium potential must be implicated, in addition to K. We assessed the participation of calcium, an important candidate because of its involvement in light adaptation. Three strategies were adopted to minimize the impairments to cytosolic Ca homeostasis and loss of responsiveness that normally result from the required ionic manipulations: (a) Internal dialysis with Na-free solutions, to prevent reverse operation of the Na/Ca exchanger. (b) Rapid solution changes, temporally limiting exposure to potentially detrimental ionic conditions. (c) Single-channel recording, exposing only the cell- attached patch of membrane to the test solutions. An inward whole-cell photocurrent could be measured with Ca as the only extracellular charge carrier. Decreasing the [Ca]o to 0.5 mM reduced the response by 43% and displaced the reversal potential by -4.3 mV; the shift was larger (delta Vrev = -44 mV) when intracellular permeant cations were also removed. In all cases, however, the current carried by Ca was < 5% of that measured with normal [Na]o. Unitary light-activated currents were reduced in a similar way when the pipette contained only divalent cations, indicating a substantial selectivity for Na over Ca. The fall kinetics of the photoresponse was slower when external Ca was replaced by Ba, or when the membrane was depolarized; however, dialysis with 10 mM BAPTA failed to antagonize this effect, suggesting that mechanisms other than the Ca influx participate in the modulation of the time course of the photocurrent.
format Text
id pubmed-2219392
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22193922008-04-23 Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations J Gen Physiol Articles The receptor potential of rhabdomeric photoreceptors is mediated primarily by a Na influx, but other ions must also permeate through light-dependent channels to account for some properties of the photoresponse. We examined ion conduction in macroscopic and single- channel light-induced currents of Lima and Pecten photoreceptors. In the absence of Na, a fivefold change in extracellular K shifted the reversal voltage of the photocurrent (Vrev) by approximately 27 mV. Because the dependency of Vrev on [K]o was sub-Nernstian, and Vrev in each condition was more positive than Ek, some other ion(s) with a positive equilibrium potential must be implicated, in addition to K. We assessed the participation of calcium, an important candidate because of its involvement in light adaptation. Three strategies were adopted to minimize the impairments to cytosolic Ca homeostasis and loss of responsiveness that normally result from the required ionic manipulations: (a) Internal dialysis with Na-free solutions, to prevent reverse operation of the Na/Ca exchanger. (b) Rapid solution changes, temporally limiting exposure to potentially detrimental ionic conditions. (c) Single-channel recording, exposing only the cell- attached patch of membrane to the test solutions. An inward whole-cell photocurrent could be measured with Ca as the only extracellular charge carrier. Decreasing the [Ca]o to 0.5 mM reduced the response by 43% and displaced the reversal potential by -4.3 mV; the shift was larger (delta Vrev = -44 mV) when intracellular permeant cations were also removed. In all cases, however, the current carried by Ca was < 5% of that measured with normal [Na]o. Unitary light-activated currents were reduced in a similar way when the pipette contained only divalent cations, indicating a substantial selectivity for Na over Ca. The fall kinetics of the photoresponse was slower when external Ca was replaced by Ba, or when the membrane was depolarized; however, dialysis with 10 mM BAPTA failed to antagonize this effect, suggesting that mechanisms other than the Ca influx participate in the modulation of the time course of the photocurrent. The Rockefeller University Press 1996-06-01 /pmc/articles/PMC2219392/ /pubmed/8783072 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title_full Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title_fullStr Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title_full_unstemmed Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title_short Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations
title_sort ion permeation through light-activated channels in rhabdomeric photoreceptors. role of divalent cations
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219392/
https://www.ncbi.nlm.nih.gov/pubmed/8783072