Cargando…

Cloning, purification and preliminary crystallographic analysis of the Bacillus subtilis GTPase YphC–GDP complex

The Bacillus subtilis YphC gene encodes an essential GTPase thought to be involved in ribosome binding and whose protein product may represent a target for the development of a novel antibacterial agent. Sequence analysis reveals that YphC belongs to the EngA family of GTPases, which uniquely contai...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ling, Muench, Stephen P., Roujeinikova, Anna, Sedelnikova, Svetlana E., Rice, David W.
Formato: Texto
Lenguaje:English
Publicado: International Union of Crystallography 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219971/
https://www.ncbi.nlm.nih.gov/pubmed/16682769
http://dx.doi.org/10.1107/S1744309106011456
Descripción
Sumario:The Bacillus subtilis YphC gene encodes an essential GTPase thought to be involved in ribosome binding and whose protein product may represent a target for the development of a novel antibacterial agent. Sequence analysis reveals that YphC belongs to the EngA family of GTPases, which uniquely contain two adjacent GTP-binding domains. Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 62.71, b = 65.05, c = 110.61 Å, and have one molecule in the asymmetric unit. Data sets at three different wavelengths were collected on a single crystal to 2.5 Å resolution at the Daresbury SRS in order to solve the structure by MAD. Ultimately, analysis of YphC in complex with GDP may allow a greater understanding of the EngA family of essential GTPases.