Cargando…

Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice

BACKGROUND: Cockroach exposure is a major risk factor for the development of asthma. Inhalation of fecal remnants (frass) is the likely sensitizing agent; however isolated frass has not been tested for its ability to induce experimental asthma in mice. METHODS: Mice (Balb/c or C57Bl/6) were sensitiz...

Descripción completa

Detalles Bibliográficos
Autores principales: Page, Kristen, Lierl, Kristin M, Herman, Nancy, Wills-Karp, Marsha
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222603/
https://www.ncbi.nlm.nih.gov/pubmed/18067672
http://dx.doi.org/10.1186/1465-9921-8-91
Descripción
Sumario:BACKGROUND: Cockroach exposure is a major risk factor for the development of asthma. Inhalation of fecal remnants (frass) is the likely sensitizing agent; however isolated frass has not been tested for its ability to induce experimental asthma in mice. METHODS: Mice (Balb/c or C57Bl/6) were sensitized and challenged with GC frass or GC frass devoid of proteases and measurements of airway inflammation and hyperresponsiveness were performed (interleukin (IL)-5, -13, and interferon gamma (IFNγ) levels in bronchoalveolar lavage fluid, serum IgE levels, airway hyperresponsiveness, cellular infiltration, and mucin production). RESULTS: Sensitization and challenge of Balb/c mice with GC frass resulted in increased airway inflammation and hyperresponsiveness. C57Bl/6 mice were not susceptible to this model of sensitization; however they were sensitized to GC frass using a more aggressive sensitization and challenge protocol. In mice that were sensitized by inhalation, the active serine proteases in GC frass played a role in airway hyperresponsiveness as these mice had less airway hyperresponsiveness to acetylcholine and less mucin production. Proteases did not play a role in mediating the allergic inflammation in mice sensitized via intraperitoneal injection. CONCLUSION: While both strains of mice were able to induce experimental asthma following GC frass sensitization and challenge, the active serine proteases in GC frass only play a role in airway hyperresponsiveness in Balb/c mice that were susceptible to sensitization via inhalation. The differences in the method of sensitization suggest genetic differences between strains of mice.