Cargando…
Identifying protein complexes directly from high-throughput TAP data with Markov random fields
BACKGROUND: Predicting protein complexes from experimental data remains a challenge due to limited resolution and stochastic errors of high-throughput methods. Current algorithms to reconstruct the complexes typically rely on a two-step process. First, they construct an interaction graph from the da...
Autores principales: | Rungsarityotin, Wasinee, Krause, Roland, Schödl, Arno, Schliep, Alexander |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222659/ https://www.ncbi.nlm.nih.gov/pubmed/18093306 http://dx.doi.org/10.1186/1471-2105-8-482 |
Ejemplares similares
-
Markov random fields
por: Rozanov, Yu A
Publicado: (1982) -
Markov random fields and their applications
por: Kindermann, Ross, et al.
Publicado: (1980) -
MarkovFit: Structure Fitting for Protein Complexes in Electron Microscopy Maps Using Markov Random Field
por: Alnabati, Eman, et al.
Publicado: (2022) -
Compressed computations using wavelets for hidden Markov models with continuous observations
por: Bello, Luca, et al.
Publicado: (2023) -
Fast MCMC sampling for hidden markov models to determine copy number variations
por: Mahmud, Md Pavel, et al.
Publicado: (2011)