Cargando…

EXPERIMENTALLY INDUCED CHROMOSOME ABERRATIONS IN PLANTS : II. THE EFFECT OF CYANIDE AND OTHER HEAVY METAL COMPLEXING AGENTS ON THE PRODUCTION OF CHROMOSOME ABERRATIONS BY X-RAYS

The discovery of Lilly and Thoday, that the presence of potassium cyanide (KCN) increases the production of chromosome aberrations by x-rays in anoxia, but has no effect on the production of chromosome aberrations by x-rays in air, was confirmed. In the presence of cyanide, the effect of a given dos...

Descripción completa

Detalles Bibliográficos
Autores principales: Kihlman, B. A., Merz, T., Swanson, C. P.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1957
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224038/
https://www.ncbi.nlm.nih.gov/pubmed/13438922
Descripción
Sumario:The discovery of Lilly and Thoday, that the presence of potassium cyanide (KCN) increases the production of chromosome aberrations by x-rays in anoxia, but has no effect on the production of chromosome aberrations by x-rays in air, was confirmed. In the presence of cyanide, the effect of a given dose of x-rays in nitrogen was found to be even greater than the effect of the same dose of x-rays in air. The cyanide effect on x-ray breakage in nitrogen was obtained at cyanide concentrations as low as 2 x 10(–5) M. The breakage obtained after the combined x-ray-cyanide treatments was of the x-ray type, as evidenced by the distribution of breaks within and between the chromosomes. A number of other heavy metal complexing agents as well as some other compounds were tested for their ability to increase x-ray breakage in nitrogen and air. Of these compounds only cupferron proved to be effective. The results are discussed and it is concluded that the increased x-ray breakage in the presence of cyanide or cupferron cannot be due to an accumulation of peroxides. Instead it is suggested that the cyanide effect may be due to a complex formation between the active agents and heavy metals, presumably iron, within the chromosomes. The consequences of this hypothesis on the concept of the "oxygen effect," are discussed.