Cargando…

Observations of Measles Virus Infection of Cultured Human Cells : I. A Study of Development and Spread of Virus Antigen by Means of Immunofluorescence

The development of measles virus in cultures of both primary human amnion cells and H.Ep.-2 cells has been followed by means of the indirect fluorescent antibody technic and concurrent light and electron microscope observations. The immunofluorescence studies revealed that there is a latent period f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rapp, Fred, Gordon, Irving, Baker, Richard F.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1960
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224866/
https://www.ncbi.nlm.nih.gov/pubmed/14436276
Descripción
Sumario:The development of measles virus in cultures of both primary human amnion cells and H.Ep.-2 cells has been followed by means of the indirect fluorescent antibody technic and concurrent light and electron microscope observations. The immunofluorescence studies revealed that there is a latent period for development of demonstrable measles virus antigen. In amnion cells the latent period lasted for at least 3 days. In contrast, virus antigen could be detected in H.Ep.-2 cells as early as 12 hours following inoculation. In each cell system virus antigen was seen in either nucleus or cytoplasm of infected cells, or both. Early localization tended to be perinuclear. Intranuclear fluorescence was generally less bright and less widespread than cytoplasmic fluorescence. Giant cells and long cytoplasmic spindle-shaped processes appeared regularly in infected cultures. Infectious virus was liberated into the nutrient fluid but when extracellular virus was inhibited by antibody, spread of infection from cell to cell in the monolayer still continued. Results obtained in concurrent electron microscope studies will be presented separately. Correlation of the results of the immunofluorescence and electron microscope studies suggests the possibility that much of the immunofluorescence observed might be due to antigen in virus precursors or components.