Cargando…

HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY

The formation of protein absorption droplets in the cells of the proximal convolution was studied in mouse kidney. Ox hemoglobin was administered intraperitoneally and kidney specimens were collected at intervals of 30 minutes to 4 days after injection. In the lumen of the nephron, hemoglobin was co...

Descripción completa

Detalles Bibliográficos
Autor principal: Miller, Fritz
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1960
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224954/
https://www.ncbi.nlm.nih.gov/pubmed/13770760
_version_ 1782149594122027008
author Miller, Fritz
author_facet Miller, Fritz
author_sort Miller, Fritz
collection PubMed
description The formation of protein absorption droplets in the cells of the proximal convolution was studied in mouse kidney. Ox hemoglobin was administered intraperitoneally and kidney specimens were collected at intervals of 30 minutes to 4 days after injection. In the lumen of the nephron, hemoglobin was concentrated to an opaque mass whose relations with the brush border and the epithelium could be easily followed. It was found that hemoglobin passes through the brush border in between the microvilli, enters the channels of tubular invaginations at the bases of the brush border, and is transported in bulk into vacuoles in the intermediate cell zone. These vacuoles increase in size and are transformed through further concentration into dense absorption droplets. Using the opaque hemoglobin content of the nephron as a tracer, functional continuity of the system of the tubular invaginations with the lumen on one side and the vacuoles on the other was demonstrated. Mitochondria lie closely apposed to vacuoles and droplets, but are not primarily involved in droplet formation. 15 hours after injection and later, ferritin and systems of layered membranes become visible in the droplets as their density decreases. These membranes are interpreted as lipoprotein membranes; similar membranes are found in the lumen of the tubuli. It is suggested that phospholipids enter into the vacuoles together with hemoglobin from the tubular lumen and form membrane systems of lipoproteins in the droplets. At 3 to 4 days the droplets contain aggregates of ferritin, and the iron reaction becomes positive in the tubule cells. No significant changes were found in the Golgi apparatus or in the microbodies during hemoglobin absorption. At all time points investigated, the terminal bars seal the intercellular spaces against penetration by hemoglobin in the proximal and distal convolutions and in the collecting ducts.
format Text
id pubmed-2224954
institution National Center for Biotechnology Information
language English
publishDate 1960
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22249542008-05-01 HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY Miller, Fritz J Biophys Biochem Cytol Article The formation of protein absorption droplets in the cells of the proximal convolution was studied in mouse kidney. Ox hemoglobin was administered intraperitoneally and kidney specimens were collected at intervals of 30 minutes to 4 days after injection. In the lumen of the nephron, hemoglobin was concentrated to an opaque mass whose relations with the brush border and the epithelium could be easily followed. It was found that hemoglobin passes through the brush border in between the microvilli, enters the channels of tubular invaginations at the bases of the brush border, and is transported in bulk into vacuoles in the intermediate cell zone. These vacuoles increase in size and are transformed through further concentration into dense absorption droplets. Using the opaque hemoglobin content of the nephron as a tracer, functional continuity of the system of the tubular invaginations with the lumen on one side and the vacuoles on the other was demonstrated. Mitochondria lie closely apposed to vacuoles and droplets, but are not primarily involved in droplet formation. 15 hours after injection and later, ferritin and systems of layered membranes become visible in the droplets as their density decreases. These membranes are interpreted as lipoprotein membranes; similar membranes are found in the lumen of the tubuli. It is suggested that phospholipids enter into the vacuoles together with hemoglobin from the tubular lumen and form membrane systems of lipoproteins in the droplets. At 3 to 4 days the droplets contain aggregates of ferritin, and the iron reaction becomes positive in the tubule cells. No significant changes were found in the Golgi apparatus or in the microbodies during hemoglobin absorption. At all time points investigated, the terminal bars seal the intercellular spaces against penetration by hemoglobin in the proximal and distal convolutions and in the collecting ducts. The Rockefeller University Press 1960-12-01 /pmc/articles/PMC2224954/ /pubmed/13770760 Text en Copyright © Copyright 1961 by The Rockefeller Institute Press
spellingShingle Article
Miller, Fritz
HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title_full HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title_fullStr HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title_full_unstemmed HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title_short HEMOGLOBIN ABSORPTION BY THE CELLS OF THE PROXIMAL CONVOLUTED TUBULE IN MOUSE KIDNEY
title_sort hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224954/
https://www.ncbi.nlm.nih.gov/pubmed/13770760
work_keys_str_mv AT millerfritz hemoglobinabsorptionbythecellsoftheproximalconvolutedtubuleinmousekidney