Cargando…
Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics
BACKGROUND: Most Ministries of Health across Africa invest substantial resources in some form of health management information system (HMIS) to coordinate the routine acquisition and compilation of monthly treatment and attendance records from health facilities nationwide. Despite the expense of the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225405/ https://www.ncbi.nlm.nih.gov/pubmed/18072976 http://dx.doi.org/10.1186/1741-7015-5-37 |
_version_ | 1782149650072993792 |
---|---|
author | Gething, Peter W Noor, Abdisalan M Goodman, Catherine A Gikandi, Priscilla W Hay, Simon I Sharif, Shahnaaz K Atkinson, Peter M Snow, Robert W |
author_facet | Gething, Peter W Noor, Abdisalan M Goodman, Catherine A Gikandi, Priscilla W Hay, Simon I Sharif, Shahnaaz K Atkinson, Peter M Snow, Robert W |
author_sort | Gething, Peter W |
collection | PubMed |
description | BACKGROUND: Most Ministries of Health across Africa invest substantial resources in some form of health management information system (HMIS) to coordinate the routine acquisition and compilation of monthly treatment and attendance records from health facilities nationwide. Despite the expense of these systems, poor data coverage means they are rarely, if ever, used to generate reliable evidence for decision makers. One critical weakness across Africa is the current lack of capacity to effectively monitor patterns of service use through time so that the impacts of changes in policy or service delivery can be evaluated. Here, we present a new approach that, for the first time, allows national changes in health service use during a time of major health policy change to be tracked reliably using imperfect data from a national HMIS. METHODS: Monthly attendance records were obtained from the Kenyan HMIS for 1 271 government-run and 402 faith-based outpatient facilities nationwide between 1996 and 2004. A space-time geostatistical model was used to compensate for the large proportion of missing records caused by non-reporting health facilities, allowing robust estimation of monthly and annual use of services by outpatients during this period. RESULTS: We were able to reconstruct robust time series of mean levels of outpatient utilisation of health facilities at the national level and for all six major provinces in Kenya. These plots revealed reliably for the first time a period of steady nationwide decline in the use of health facilities in Kenya between 1996 and 2002, followed by a dramatic increase from 2003. This pattern was consistent across different causes of attendance and was observed independently in each province. CONCLUSION: The methodological approach presented can compensate for missing records in health information systems to provide robust estimates of national patterns of outpatient service use. This represents the first such use of HMIS data and contributes to the resurrection of these hugely expensive but underused systems as national monitoring tools. Applying this approach to Kenya has yielded output with immediate potential to enhance the capacity of decision makers in monitoring nationwide patterns of service use and assessing the impact of changes in health policy and service delivery. |
format | Text |
id | pubmed-2225405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22254052008-02-03 Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics Gething, Peter W Noor, Abdisalan M Goodman, Catherine A Gikandi, Priscilla W Hay, Simon I Sharif, Shahnaaz K Atkinson, Peter M Snow, Robert W BMC Med Research Article BACKGROUND: Most Ministries of Health across Africa invest substantial resources in some form of health management information system (HMIS) to coordinate the routine acquisition and compilation of monthly treatment and attendance records from health facilities nationwide. Despite the expense of these systems, poor data coverage means they are rarely, if ever, used to generate reliable evidence for decision makers. One critical weakness across Africa is the current lack of capacity to effectively monitor patterns of service use through time so that the impacts of changes in policy or service delivery can be evaluated. Here, we present a new approach that, for the first time, allows national changes in health service use during a time of major health policy change to be tracked reliably using imperfect data from a national HMIS. METHODS: Monthly attendance records were obtained from the Kenyan HMIS for 1 271 government-run and 402 faith-based outpatient facilities nationwide between 1996 and 2004. A space-time geostatistical model was used to compensate for the large proportion of missing records caused by non-reporting health facilities, allowing robust estimation of monthly and annual use of services by outpatients during this period. RESULTS: We were able to reconstruct robust time series of mean levels of outpatient utilisation of health facilities at the national level and for all six major provinces in Kenya. These plots revealed reliably for the first time a period of steady nationwide decline in the use of health facilities in Kenya between 1996 and 2002, followed by a dramatic increase from 2003. This pattern was consistent across different causes of attendance and was observed independently in each province. CONCLUSION: The methodological approach presented can compensate for missing records in health information systems to provide robust estimates of national patterns of outpatient service use. This represents the first such use of HMIS data and contributes to the resurrection of these hugely expensive but underused systems as national monitoring tools. Applying this approach to Kenya has yielded output with immediate potential to enhance the capacity of decision makers in monitoring nationwide patterns of service use and assessing the impact of changes in health policy and service delivery. BioMed Central 2007-12-11 /pmc/articles/PMC2225405/ /pubmed/18072976 http://dx.doi.org/10.1186/1741-7015-5-37 Text en Copyright © 2007 Gething et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gething, Peter W Noor, Abdisalan M Goodman, Catherine A Gikandi, Priscilla W Hay, Simon I Sharif, Shahnaaz K Atkinson, Peter M Snow, Robert W Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title | Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title_full | Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title_fullStr | Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title_full_unstemmed | Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title_short | Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics |
title_sort | information for decision making from imperfect national data: tracking major changes in health care use in kenya using geostatistics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225405/ https://www.ncbi.nlm.nih.gov/pubmed/18072976 http://dx.doi.org/10.1186/1741-7015-5-37 |
work_keys_str_mv | AT gethingpeterw informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT noorabdisalanm informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT goodmancatherinea informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT gikandipriscillaw informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT haysimoni informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT sharifshahnaazk informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT atkinsonpeterm informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics AT snowrobertw informationfordecisionmakingfromimperfectnationaldatatrackingmajorchangesinhealthcareuseinkenyausinggeostatistics |