Cargando…
Bioinformatic identification of novel putative photoreceptor specific cis-elements
BACKGROUND: Cell specific gene expression is largely regulated by different combinations of transcription factors that bind cis-elements in the upstream promoter sequence. However, experimental detection of cis-elements is difficult, expensive, and time-consuming. This provides a motivation for deve...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225425/ https://www.ncbi.nlm.nih.gov/pubmed/17953763 http://dx.doi.org/10.1186/1471-2105-8-407 |
_version_ | 1782149654814654464 |
---|---|
author | Danko, Charles G McIlvain, Vera A Qin, Maochun Knox, Barry E Pertsov, Arkady M |
author_facet | Danko, Charles G McIlvain, Vera A Qin, Maochun Knox, Barry E Pertsov, Arkady M |
author_sort | Danko, Charles G |
collection | PubMed |
description | BACKGROUND: Cell specific gene expression is largely regulated by different combinations of transcription factors that bind cis-elements in the upstream promoter sequence. However, experimental detection of cis-elements is difficult, expensive, and time-consuming. This provides a motivation for developing bioinformatic methods to identify cis-elements that could prioritize future experimental studies. Here, we use motif discovery algorithms to predict transcription factor binding sites involved in regulating the differences between murine rod and cone photoreceptor populations. RESULTS: To identify highly conserved motifs enriched in promoters that drive expression in either rod or cone photoreceptors, we assembled a set of murine rod-specific, cone-specific, and non-photoreceptor background promoter sequences. These sets were used as input to a newly devised motif discovery algorithm called Iterative Alignment/Modular Motif Selection (IAMMS). Using IAMMS, we predicted 34 motifs that may contribute to rod-specific (19 motifs) or cone-specific (15 motifs) expression patterns. Of these, 16 rod- and 12 cone-specific motifs were found in clusters near the transcription start site. New findings include the observation that cone promoters tend to contain TATA boxes, while rod promoters tend to be TATA-less (exempting Rho and Cnga1). Additionally, we identify putative sites for IL-6 effectors (in rods) and RXR family members (in cones) that can explain experimental data showing changes to cell-fate by activating these signaling pathways during rod/cone development. Two of the predicted motifs (NRE and ROP2) have been confirmed experimentally to be involved in cell-specific expression patterns. We provide a full database of predictions as additional data that may contain further valuable information. IAMMS predictions are compared with existing motif discovery algorithms, DME and BioProspector. We find that over 60% of IAMMS predictions are confirmed by at least one other motif discovery algorithm. CONCLUSION: We predict novel, putative cis-elements enriched in the promoter of rod-specific or cone-specific genes. These are candidate binding sites for transcription factors involved in maintaining functional differences between rod and cone photoreceptor populations. |
format | Text |
id | pubmed-2225425 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22254252008-02-03 Bioinformatic identification of novel putative photoreceptor specific cis-elements Danko, Charles G McIlvain, Vera A Qin, Maochun Knox, Barry E Pertsov, Arkady M BMC Bioinformatics Research Article BACKGROUND: Cell specific gene expression is largely regulated by different combinations of transcription factors that bind cis-elements in the upstream promoter sequence. However, experimental detection of cis-elements is difficult, expensive, and time-consuming. This provides a motivation for developing bioinformatic methods to identify cis-elements that could prioritize future experimental studies. Here, we use motif discovery algorithms to predict transcription factor binding sites involved in regulating the differences between murine rod and cone photoreceptor populations. RESULTS: To identify highly conserved motifs enriched in promoters that drive expression in either rod or cone photoreceptors, we assembled a set of murine rod-specific, cone-specific, and non-photoreceptor background promoter sequences. These sets were used as input to a newly devised motif discovery algorithm called Iterative Alignment/Modular Motif Selection (IAMMS). Using IAMMS, we predicted 34 motifs that may contribute to rod-specific (19 motifs) or cone-specific (15 motifs) expression patterns. Of these, 16 rod- and 12 cone-specific motifs were found in clusters near the transcription start site. New findings include the observation that cone promoters tend to contain TATA boxes, while rod promoters tend to be TATA-less (exempting Rho and Cnga1). Additionally, we identify putative sites for IL-6 effectors (in rods) and RXR family members (in cones) that can explain experimental data showing changes to cell-fate by activating these signaling pathways during rod/cone development. Two of the predicted motifs (NRE and ROP2) have been confirmed experimentally to be involved in cell-specific expression patterns. We provide a full database of predictions as additional data that may contain further valuable information. IAMMS predictions are compared with existing motif discovery algorithms, DME and BioProspector. We find that over 60% of IAMMS predictions are confirmed by at least one other motif discovery algorithm. CONCLUSION: We predict novel, putative cis-elements enriched in the promoter of rod-specific or cone-specific genes. These are candidate binding sites for transcription factors involved in maintaining functional differences between rod and cone photoreceptor populations. BioMed Central 2007-10-22 /pmc/articles/PMC2225425/ /pubmed/17953763 http://dx.doi.org/10.1186/1471-2105-8-407 Text en Copyright © 2007 Danko et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Danko, Charles G McIlvain, Vera A Qin, Maochun Knox, Barry E Pertsov, Arkady M Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title | Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title_full | Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title_fullStr | Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title_full_unstemmed | Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title_short | Bioinformatic identification of novel putative photoreceptor specific cis-elements |
title_sort | bioinformatic identification of novel putative photoreceptor specific cis-elements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225425/ https://www.ncbi.nlm.nih.gov/pubmed/17953763 http://dx.doi.org/10.1186/1471-2105-8-407 |
work_keys_str_mv | AT dankocharlesg bioinformaticidentificationofnovelputativephotoreceptorspecificciselements AT mcilvainveraa bioinformaticidentificationofnovelputativephotoreceptorspecificciselements AT qinmaochun bioinformaticidentificationofnovelputativephotoreceptorspecificciselements AT knoxbarrye bioinformaticidentificationofnovelputativephotoreceptorspecificciselements AT pertsovarkadym bioinformaticidentificationofnovelputativephotoreceptorspecificciselements |