Cargando…

Cation Effects on Chloride Fluxes and Accumulation Levels in Barley Roots

Accumulation of Cl(-) by excised barley roots, as of K(+), approaches a maximum level at which the ion influx and efflux rates become equal. The rate of Cl(-) influx at this equilibrium is close to the initial rate while the efflux rate increases with time from zero to equality with influx. The Cl(-...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, P. C., Edwards, D. G.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1966
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225633/
https://www.ncbi.nlm.nih.gov/pubmed/5971030
Descripción
Sumario:Accumulation of Cl(-) by excised barley roots, as of K(+), approaches a maximum level at which the ion influx and efflux rates become equal. The rate of Cl(-) influx at this equilibrium is close to the initial rate while the efflux rate increases with time from zero to equality with influx. The Cl(-) fluxes are independent of simultaneous exchange flux of the cations, but depend on the nature and concentration of the salt solutions from which they originate. The Cl(-) content at equilibrium, however, is largely independent of the external concentrations. The approach to equilibrium reflects the presence of the cation. Cl(-) flux equilibrium is attained more rapidly in KCl than in CsCl or CaCl(2). This is presumably an effect of much slower distribution of Cs(+) and Ca(++) than of K(+) within the roots. Accumulated Cs(+) appears to form a barrier to ion movement primarily within the outermost cells, thereby reducing influx and ultimately efflux rates of both Cl(-) and cations. Slow internal mixing and considerable self-exchange of the incoming ions suggest internal transport over a series of steps which can become rate-limiting to the accumulation of ions in roots.