Cargando…

Electrical Properties of the Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria

In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimu...

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Akira, Obara, Shosaku, Akiyama, Toyohiro, Yumoto, Katsuto
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1967
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225689/
https://www.ncbi.nlm.nih.gov/pubmed/6034505
Descripción
Sumario:In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.