Cargando…
Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons
The ionic bases of the "positive" afterpotential (ap) have been examined in the so-called DInhi neurons of the central nervous system of Cryptomphallus aspersa. In these cells E (K) has been determined and its value compared with the equilibrium, potential of the ap (E (ap)). It has been f...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1967
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225719/ https://www.ncbi.nlm.nih.gov/pubmed/6033581 |
_version_ | 1782149692074754048 |
---|---|
author | Chiarandini, Dante J. Stefani, Enrique |
author_facet | Chiarandini, Dante J. Stefani, Enrique |
author_sort | Chiarandini, Dante J. |
collection | PubMed |
description | The ionic bases of the "positive" afterpotential (ap) have been examined in the so-called DInhi neurons of the central nervous system of Cryptomphallus aspersa. In these cells E (K) has been determined and its value compared with the equilibrium, potential of the ap (E (ap)). It has been found that in half of the studied cells the E (K) value is very close to E (ap) whereas in another half, the difference (E (K) - E (ap)) is large and amounts to circa -10 mv. The effects of changes in the concentration gradients of K(+), Cl(-), and Na(+) were assayed in both groups of cells. When the [K(i)/[K](o) ratio is reduced in both groups of neurons, the ap amplitude and the E (ap) diminished. In cells displaying a large (E (K) - E (ap)), Cl-free Ringer's solution diminished the ap amplitude and E (ap), but produced no effect in the neurons with a reduced (E (K) - E (ap)). A similar effect was observed if [Cl], was increased by intracellular injection of NaCl. Changes in both [Na](o) and [Na](i) were ineffective. It is concluded that K(+) is the only ion involved in the origin of the ap in the groups of cells with a low value for (E (K) - E (ap)). On the contrary, the ap of the neurons presenting large (E (K) - E (ap)) is produced by a simultaneous increase in the fluxes of both K(+) and Cl(-). |
format | Text |
id | pubmed-2225719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1967 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22257192008-04-23 Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons Chiarandini, Dante J. Stefani, Enrique J Gen Physiol Article The ionic bases of the "positive" afterpotential (ap) have been examined in the so-called DInhi neurons of the central nervous system of Cryptomphallus aspersa. In these cells E (K) has been determined and its value compared with the equilibrium, potential of the ap (E (ap)). It has been found that in half of the studied cells the E (K) value is very close to E (ap) whereas in another half, the difference (E (K) - E (ap)) is large and amounts to circa -10 mv. The effects of changes in the concentration gradients of K(+), Cl(-), and Na(+) were assayed in both groups of cells. When the [K(i)/[K](o) ratio is reduced in both groups of neurons, the ap amplitude and the E (ap) diminished. In cells displaying a large (E (K) - E (ap)), Cl-free Ringer's solution diminished the ap amplitude and E (ap), but produced no effect in the neurons with a reduced (E (K) - E (ap)). A similar effect was observed if [Cl], was increased by intracellular injection of NaCl. Changes in both [Na](o) and [Na](i) were ineffective. It is concluded that K(+) is the only ion involved in the origin of the ap in the groups of cells with a low value for (E (K) - E (ap)). On the contrary, the ap of the neurons presenting large (E (K) - E (ap)) is produced by a simultaneous increase in the fluxes of both K(+) and Cl(-). The Rockefeller University Press 1967-05-01 /pmc/articles/PMC2225719/ /pubmed/6033581 Text en Copyright © 1967 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Chiarandini, Dante J. Stefani, Enrique Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title | Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title_full | Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title_fullStr | Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title_full_unstemmed | Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title_short | Two Different Ionic Mechanisms Generating the Spike "Positive" Afterpotential in Molluscan Neurons |
title_sort | two different ionic mechanisms generating the spike "positive" afterpotential in molluscan neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225719/ https://www.ncbi.nlm.nih.gov/pubmed/6033581 |
work_keys_str_mv | AT chiarandinidantej twodifferentionicmechanismsgeneratingthespikepositiveafterpotentialinmolluscanneurons AT stefanienrique twodifferentionicmechanismsgeneratingthespikepositiveafterpotentialinmolluscanneurons |