Cargando…

Contractility and Conformation

Contractility in fibers can arise from changes of macromolecular conformation caused by changes in some thermodynamic variable such as temperature, pH, or solvent composition. Illustrations are given of contractile processes in fibers and of changes in macromolecular conformation in dilute solution....

Descripción completa

Detalles Bibliográficos
Autor principal: Scheraga, Harold A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1967
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225724/
https://www.ncbi.nlm.nih.gov/pubmed/6050599
Descripción
Sumario:Contractility in fibers can arise from changes of macromolecular conformation caused by changes in some thermodynamic variable such as temperature, pH, or solvent composition. Illustrations are given of contractile processes in fibers and of changes in macromolecular conformation in dilute solution. These may involve order-disorder transitions, e.g. of the type exhibited by the helix-coil transition. A statistical mechanical treatment of the helix-coil transition involves the assignment of statistical weights to various states and the proper counting of these statistical weights in the formation and evaluation of the partition function; the thermodynamic properties of the system are derivable from the partition function. The counting procedure involved in the consideration of the α-helix and random coil is described. In addition, the factors affecting the relative stabilities of various helical conformations are discussed. These considerations of macromolecular conformation provide a basis for discussing contractile mechanisms in which changes of conformation are involved.