Cargando…
Recent X-ray Diffraction and Electron Microscope Studies of Striated Muscle
The sliding filament model for muscular contraction supposes that an appropriately directed force is developed between the actin and myosin filaments by some process in which the cross-bridges are involved. The cross-bridges between the filaments are believed to represent the parts of the myosin mol...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1967
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225753/ https://www.ncbi.nlm.nih.gov/pubmed/4227925 |
Sumario: | The sliding filament model for muscular contraction supposes that an appropriately directed force is developed between the actin and myosin filaments by some process in which the cross-bridges are involved. The cross-bridges between the filaments are believed to represent the parts of the myosin molecules which possess the active sites for ATPase activity and actin-binding ability, and project out sidewise from the backbone of the thick filaments. The arrangement of the cross-bridges is now being studied by improved low-angle X-ray diffraction techniques, which show that in a resting muscle, they are arranged approximately but not exactly in a helical pattern, and that there are other structural features of the thick filaments which give rise to additional long periodicities shown up by the X-ray diagram. The actin filaments also contain helically arranged subunits, and both the subunit repeat and the helical repeat are different from those in the myosin filaments. Diffraction diagrams can be obtained from muscles in rigor (when permanent attachment of the cross-bridges to the actin subunits takes place) and now, taking advantage of the great increase in the speed of recording, from actively contracting muscles. These show that changes in the arrangement of the cross-bridges are produced under both these conditions and are no doubt associated in contraction with the development of force. Thus configurational changes of the myosin component in muscle have been demonstrated: these take place without any significant over-all change in the length of the filaments. |
---|