Cargando…
Studies on the Active Transport of Calcium in Human Red Cells
The Ca(++) transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca(++) from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of (45)Ca infused inside red cells indicate...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1969
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225953/ https://www.ncbi.nlm.nih.gov/pubmed/5357189 |
_version_ | 1782149746575540224 |
---|---|
author | Lee, Kwang Soo Shin, Bak Chang |
author_facet | Lee, Kwang Soo Shin, Bak Chang |
author_sort | Lee, Kwang Soo |
collection | PubMed |
description | The Ca(++) transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca(++) from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of (45)Ca infused inside red cells indicated that over 95% of all Ca(++) in the cells was transported into media in 20 min incubation under the optimum experimental conditions. The influence of temperature on the rate constant of transport indicated an activation energy of 13,500 cal per mole. The optimum pH range of media for the transport was between 7.5 and 8.5. As energy sources, ATP(1), CTP, and UTP were about equally effective, GTP somewhat less effective, and ITP least effective among the nucleotides tested. The Ca(++) transport does not appear to involve exchange of Ca(++) with any monovalent or divalent cations. Also, it is not influenced by oligomycin, sodium azide, or ouabain in high concentrations, which inhibit the Ca(++) transport in mitochondria or in sarcoplasmic reticulum. In these respects, the Ca(++) transport mechanism in the red cell membrane is different from those of mitochondria and the sarcoplasmic reticulum. |
format | Text |
id | pubmed-2225953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1969 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22259532008-04-23 Studies on the Active Transport of Calcium in Human Red Cells Lee, Kwang Soo Shin, Bak Chang J Gen Physiol Article The Ca(++) transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca(++) from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of (45)Ca infused inside red cells indicated that over 95% of all Ca(++) in the cells was transported into media in 20 min incubation under the optimum experimental conditions. The influence of temperature on the rate constant of transport indicated an activation energy of 13,500 cal per mole. The optimum pH range of media for the transport was between 7.5 and 8.5. As energy sources, ATP(1), CTP, and UTP were about equally effective, GTP somewhat less effective, and ITP least effective among the nucleotides tested. The Ca(++) transport does not appear to involve exchange of Ca(++) with any monovalent or divalent cations. Also, it is not influenced by oligomycin, sodium azide, or ouabain in high concentrations, which inhibit the Ca(++) transport in mitochondria or in sarcoplasmic reticulum. In these respects, the Ca(++) transport mechanism in the red cell membrane is different from those of mitochondria and the sarcoplasmic reticulum. The Rockefeller University Press 1969-12-01 /pmc/articles/PMC2225953/ /pubmed/5357189 Text en Copyright © 1969 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Lee, Kwang Soo Shin, Bak Chang Studies on the Active Transport of Calcium in Human Red Cells |
title | Studies on the Active Transport of Calcium in Human Red Cells |
title_full | Studies on the Active Transport of Calcium in Human Red Cells |
title_fullStr | Studies on the Active Transport of Calcium in Human Red Cells |
title_full_unstemmed | Studies on the Active Transport of Calcium in Human Red Cells |
title_short | Studies on the Active Transport of Calcium in Human Red Cells |
title_sort | studies on the active transport of calcium in human red cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225953/ https://www.ncbi.nlm.nih.gov/pubmed/5357189 |
work_keys_str_mv | AT leekwangsoo studiesontheactivetransportofcalciuminhumanredcells AT shinbakchang studiesontheactivetransportofcalciuminhumanredcells |