Cargando…
Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques
The integration of a range of technologies including microfluidics, surface-enhanced Raman scattering and confocal microspectroscopy has been successfully used to characterize in situ single living CHO (Chinese hamster ovary) cells with a high degree of spatial (in three dimensions) and temporal (1 ...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2226000/ https://www.ncbi.nlm.nih.gov/pubmed/17849101 http://dx.doi.org/10.1007/s00216-007-1564-9 |
Sumario: | The integration of a range of technologies including microfluidics, surface-enhanced Raman scattering and confocal microspectroscopy has been successfully used to characterize in situ single living CHO (Chinese hamster ovary) cells with a high degree of spatial (in three dimensions) and temporal (1 s per spectrum) resolution. Following the introduction of a continuous flow of ionomycin, the real time spectral response from the cell was monitored during the agonist-evoked Ca(2+) flux process. The methodology described has the potential to be used for the study of the cellular dynamics of a range of signalling processes. [Figure: see text] |
---|