Cargando…
An Active Electrical Response in Fibroblasts
L cells have a resting potential of about -16 mv (internal negative) at 37°C in Dulbecco's modified Eagle's medium containing 10% fetal calf serum and a potassium concentration of 5.4 mM. Membrane resistivity is about 20,000 Ωcm(2) when the surface filopodia described by others are taken i...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1972
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2226052/ https://www.ncbi.nlm.nih.gov/pubmed/5064967 |
Sumario: | L cells have a resting potential of about -16 mv (internal negative) at 37°C in Dulbecco's modified Eagle's medium containing 10% fetal calf serum and a potassium concentration of 5.4 mM. Membrane resistivity is about 20,000 Ωcm(2) when the surface filopodia described by others are taken into account. Mechanical and electrical stimuli can evoke an active response from mouse L cells, cells of the 3T3 line, and normal fibroblasts which we have termed hyperpolarizing activation or the H.A. response. This consists of a prolonged (3–5 sec) increase in the membrane permeability by a factor of 2–10 with a parallel increase in membrane potential to about -50 mv. The reversal potential for the H.A. response is -80 mv. The resting cells are depolarized to about -12 mv when the external medium contains 27 mM potassium, and the potential reached at the peak of the H.A. response is about -30 mv. The reversal potential for the H.A. response is about -40 mv in 27 mM external potassium. This effect of potassium ions on the reversal potential of the H.A. response leads us to conclude that the response represents an increase in membrane permeability, predominantly to potassium, by at least a factor of five. This increase must be greater than 20-fold if previous measurements of the ratio of potassium permeability to chloride permeability in L cells are valid for the preparation used in the present study. |
---|