Cargando…
The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum
X-537 A and A 23187, two antibiotics which form liphophilic complexes with divalent cations, function as ionophores in vesicular fragments of sarcoplasmic reticulum (SR). Addition of either ionophore to SR preloaded with calcium in the presence of adenosine triphosphate (ATP), causes rapid release o...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1972
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2226096/ https://www.ncbi.nlm.nih.gov/pubmed/4264855 |
_version_ | 1782149777323982848 |
---|---|
author | Scarpa, Antonio Baldassare, Judith Inesi, Giuseppe |
author_facet | Scarpa, Antonio Baldassare, Judith Inesi, Giuseppe |
author_sort | Scarpa, Antonio |
collection | PubMed |
description | X-537 A and A 23187, two antibiotics which form liphophilic complexes with divalent cations, function as ionophores in vesicular fragments of sarcoplasmic reticulum (SR). Addition of either ionophore to SR preloaded with calcium in the presence of adenosine triphosphate (ATP), causes rapid release of calcium. Furthermore, net calcium accumulation by SR is prevented, when the ionophores are added to the reaction mixture before ATP. On the contrary, ATP-independent calcium binding to SR is not inhibited. This effect is specific for the two antibiotics and could not be reproduced, either by inactive derivatives, or by other known ionophores. Neither ionophore produces alterations of the electron microscopic appearance of SR membranes or inhibition of the calcium-dependent ATPase. In fact, the burst of ATP hydrolysis obtained on addition of calcium, is prolonged in the presence of the ionophores. Lanthanum inhibits ATP-independent calcium binding to SR, ATP-dependent calcium accumulation and calcium-dependent ATPase. However, addition of lanthanum to SR preloaded in the presence of ATP, does not cause calcium release. The reported experiments indicated that: (a) ATP-dependent calcium accumulation by SR results in primary formation of calcium ion gradients across the membrane. (b) Most of the accumulated calcium is not available for displacement by lanthanum on the outer surface of the membrane. (c) Calcium ionophores induce rapid equilibration of the gradients, by facilitating cation diffusion across the membrane. |
format | Text |
id | pubmed-2226096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1972 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22260962008-04-23 The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum Scarpa, Antonio Baldassare, Judith Inesi, Giuseppe J Gen Physiol Article X-537 A and A 23187, two antibiotics which form liphophilic complexes with divalent cations, function as ionophores in vesicular fragments of sarcoplasmic reticulum (SR). Addition of either ionophore to SR preloaded with calcium in the presence of adenosine triphosphate (ATP), causes rapid release of calcium. Furthermore, net calcium accumulation by SR is prevented, when the ionophores are added to the reaction mixture before ATP. On the contrary, ATP-independent calcium binding to SR is not inhibited. This effect is specific for the two antibiotics and could not be reproduced, either by inactive derivatives, or by other known ionophores. Neither ionophore produces alterations of the electron microscopic appearance of SR membranes or inhibition of the calcium-dependent ATPase. In fact, the burst of ATP hydrolysis obtained on addition of calcium, is prolonged in the presence of the ionophores. Lanthanum inhibits ATP-independent calcium binding to SR, ATP-dependent calcium accumulation and calcium-dependent ATPase. However, addition of lanthanum to SR preloaded in the presence of ATP, does not cause calcium release. The reported experiments indicated that: (a) ATP-dependent calcium accumulation by SR results in primary formation of calcium ion gradients across the membrane. (b) Most of the accumulated calcium is not available for displacement by lanthanum on the outer surface of the membrane. (c) Calcium ionophores induce rapid equilibration of the gradients, by facilitating cation diffusion across the membrane. The Rockefeller University Press 1972-12-01 /pmc/articles/PMC2226096/ /pubmed/4264855 Text en Copyright © 1972 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Scarpa, Antonio Baldassare, Judith Inesi, Giuseppe The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title | The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title_full | The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title_fullStr | The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title_full_unstemmed | The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title_short | The Effect of Calcium Ionophores on Fragmented Sarcoplasmic Reticulum |
title_sort | effect of calcium ionophores on fragmented sarcoplasmic reticulum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2226096/ https://www.ncbi.nlm.nih.gov/pubmed/4264855 |
work_keys_str_mv | AT scarpaantonio theeffectofcalciumionophoresonfragmentedsarcoplasmicreticulum AT baldassarejudith theeffectofcalciumionophoresonfragmentedsarcoplasmicreticulum AT inesigiuseppe theeffectofcalciumionophoresonfragmentedsarcoplasmicreticulum AT scarpaantonio effectofcalciumionophoresonfragmentedsarcoplasmicreticulum AT baldassarejudith effectofcalciumionophoresonfragmentedsarcoplasmicreticulum AT inesigiuseppe effectofcalciumionophoresonfragmentedsarcoplasmicreticulum |