Cargando…
Furosemide inhibition of chloride transport in human red blood cells
The chloride self-exchange flux across the human red cell membrane is rapidly and reversibly inhibited by 10(-4) M furosemide, a potent chloruretic agent. Furosemide reduces the chloride flux at all chloride concentrations and increases the cellular chloride concentration at which the flux is half-m...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1976
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228449/ https://www.ncbi.nlm.nih.gov/pubmed/993773 |
Sumario: | The chloride self-exchange flux across the human red cell membrane is rapidly and reversibly inhibited by 10(-4) M furosemide, a potent chloruretic agent. Furosemide reduces the chloride flux at all chloride concentrations and increases the cellular chloride concentration at which the flux is half-maximum. Kinetic analysis of the flux measurements made at several furosemide and chloride concentrations yields a pattern of mixed inhibition with a dissociation constant for the inhibitor-transport mechanism complex of 5 X 10(-5) M. From this pattern of inhibition and other observations, including that the percent inhibition is independent of pH (range 5.6-8.9), we conclude that the anionic form of furosemide interacts primarily with the chloride transport mechanism at a site separate from both the transport site and the halide-reactive modifier site. |
---|