Cargando…

Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle

Tetanic stimulation of skeletal muscle fibers elicits a train of spikes followed by a long-lasting depolarization called the late after- potential (LAP). We have conducted experiments to determine the origin of the LAP. Isolated single muscle fibers were treated with a high potassium solution (5 mM...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228455/
https://www.ncbi.nlm.nih.gov/pubmed/894247
_version_ 1782149897190899712
collection PubMed
description Tetanic stimulation of skeletal muscle fibers elicits a train of spikes followed by a long-lasting depolarization called the late after- potential (LAP). We have conducted experiments to determine the origin of the LAP. Isolated single muscle fibers were treated with a high potassium solution (5 mM or 10 mM K) followed by a sudden reduction of potassium concentration to 2.5 mM. This procedure produced a slow repolarization (K repolarization), which reflects a diffusional outflow of potassium from inside the lumen of the transverse tubular system (T system). Tetanic stimulation was then applied to the same fiber and the LAP was recorded. The time courses of K repolarization and LAP decay were compared and found to be roughly the same. This approximate equality held under various conditions that changed the time courses of both events over a wide range. Both K repolarization and the LAP became slower as fiber radius increased. These results suggest that LAP decay and K repolarization represent the same process. Thus, we conclude that the LAP is caused by potassium accumulation in the T system. A consequence of this conclusion is that delayed rectification channels exist in the T system. A rough estimation suggests that the density of delayed rectification channels is less in the T system than in the surface membrane.
format Text
id pubmed-2228455
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22284552008-04-23 Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle J Gen Physiol Articles Tetanic stimulation of skeletal muscle fibers elicits a train of spikes followed by a long-lasting depolarization called the late after- potential (LAP). We have conducted experiments to determine the origin of the LAP. Isolated single muscle fibers were treated with a high potassium solution (5 mM or 10 mM K) followed by a sudden reduction of potassium concentration to 2.5 mM. This procedure produced a slow repolarization (K repolarization), which reflects a diffusional outflow of potassium from inside the lumen of the transverse tubular system (T system). Tetanic stimulation was then applied to the same fiber and the LAP was recorded. The time courses of K repolarization and LAP decay were compared and found to be roughly the same. This approximate equality held under various conditions that changed the time courses of both events over a wide range. Both K repolarization and the LAP became slower as fiber radius increased. These results suggest that LAP decay and K repolarization represent the same process. Thus, we conclude that the LAP is caused by potassium accumulation in the T system. A consequence of this conclusion is that delayed rectification channels exist in the T system. A rough estimation suggests that the density of delayed rectification channels is less in the T system than in the surface membrane. The Rockefeller University Press 1977-07-01 /pmc/articles/PMC2228455/ /pubmed/894247 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title_full Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title_fullStr Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title_full_unstemmed Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title_short Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
title_sort delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228455/
https://www.ncbi.nlm.nih.gov/pubmed/894247