Cargando…
A mechanism for Na/Ca transport
A model is developed which requires the binding of 4 Na+ to a carrier before a Ca binding site is induced on the opposite side of the membrane. Upon binding Ca, this carrier translocates Na and Ca. The existence of partially Na-loaded but nonmobile forms for the carrier (NaX, Na2X, Na3X) suffices to...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1977
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228510/ https://www.ncbi.nlm.nih.gov/pubmed/591918 |
_version_ | 1782149910280273920 |
---|---|
collection | PubMed |
description | A model is developed which requires the binding of 4 Na+ to a carrier before a Ca binding site is induced on the opposite side of the membrane. Upon binding Ca, this carrier translocates Na and Ca. The existence of partially Na-loaded but nonmobile forms for the carrier (NaX, Na2X, Na3X) suffices to explain both the activating and the inhibitory effects of Na on the Ca transport reaction. Analytical expressions for Ca efflux and influx in terms of [Na]o, [Na]i, [Ca]o, [Ca]i, and Em are developed for the Na/Ca exchange system at equilibrium; these provide for a quantitative description of Ca fluxes. Under nonequilibrium conditions, appropriate modifications of the flux equations can be developed. These show a dependence of Ca efflux on [Ca]o and of Ca influx on [Ca]i. The large effect of internal ATP on Ca efflux and influx in squid axons, with no change in net Ca flux, can be understood on the single assumption that ATP changes the affinity of the carrier for Na at both faces of the membrane without providing an energy input to the transport reaction. |
format | Text |
id | pubmed-2228510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1977 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22285102008-04-23 A mechanism for Na/Ca transport J Gen Physiol Articles A model is developed which requires the binding of 4 Na+ to a carrier before a Ca binding site is induced on the opposite side of the membrane. Upon binding Ca, this carrier translocates Na and Ca. The existence of partially Na-loaded but nonmobile forms for the carrier (NaX, Na2X, Na3X) suffices to explain both the activating and the inhibitory effects of Na on the Ca transport reaction. Analytical expressions for Ca efflux and influx in terms of [Na]o, [Na]i, [Ca]o, [Ca]i, and Em are developed for the Na/Ca exchange system at equilibrium; these provide for a quantitative description of Ca fluxes. Under nonequilibrium conditions, appropriate modifications of the flux equations can be developed. These show a dependence of Ca efflux on [Ca]o and of Ca influx on [Ca]i. The large effect of internal ATP on Ca efflux and influx in squid axons, with no change in net Ca flux, can be understood on the single assumption that ATP changes the affinity of the carrier for Na at both faces of the membrane without providing an energy input to the transport reaction. The Rockefeller University Press 1977-12-01 /pmc/articles/PMC2228510/ /pubmed/591918 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A mechanism for Na/Ca transport |
title | A mechanism for Na/Ca transport |
title_full | A mechanism for Na/Ca transport |
title_fullStr | A mechanism for Na/Ca transport |
title_full_unstemmed | A mechanism for Na/Ca transport |
title_short | A mechanism for Na/Ca transport |
title_sort | mechanism for na/ca transport |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228510/ https://www.ncbi.nlm.nih.gov/pubmed/591918 |