Cargando…

Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins

Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was...

Descripción completa

Detalles Bibliográficos
Autores principales: Lipton, SA, Rasmussen, H, Dowling, JE
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228513/
https://www.ncbi.nlm.nih.gov/pubmed/201724
_version_ 1782149910971285504
author Lipton, SA
Rasmussen, H
Dowling, JE
author_facet Lipton, SA
Rasmussen, H
Dowling, JE
author_sort Lipton, SA
collection PubMed
description Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was recorded intracellularly. Superfusion with cGMP, Bu(2)GMP, isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor), or PGF(2α) (a prostaglandin) caused effects in rods that closely match those observed when extracellular Ca(2+) levels were lowered. For example, short exposures (up to 6 min) of the retina to these substances caused depolarization of the membrane potential, increase in response amplitudes, and some changes in waveform; but under dark-adapted or partially light-adapted conditions receptor sensitivity was virtually unaffected. That is, the position of the V-log I curve on the intensity axis was determined by the prevailing light level, not by drug level. These drugs, like lowered extracellular Ca(2+), also decreased the period of receptor saturation after a bright-adapting flash, resulting in an acceleration of the onset of membrane and sensitivity recovery during dark adaptation. Long-term (6-15 min) exposure of a dark-adapted retina to 5 mM IBMX or a combination of IBMX and cGMP caused a loss of response amplitude and a desensitization of the rods that was similar to that observed in rods after a long-term low Ca(2+) (10(-9)M) treatment. Application of high (3.2 mM) Ca(2+) to the retina blocked the effects of applied Bu(2)cGMP. PGE(1) superfusion mimicked the effects of increasing extracellular Ca(2+). The results show that increased cGMP and lowered Ca(2+) produce similar alterations in the electrical activity of rods. These findings suggest that Ca(2+) and cGMP are interrelated messengers. We speculate that low Ca(2+) may lead to increased intracellular cGMP, and/or that applied cGMP, and/or that applied cGMP may lower cytosol Ca(2+), perhaps by stimulating Ca(2+)- ATPase pumps in the outer segment.
format Text
id pubmed-2228513
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22285132008-04-23 Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins Lipton, SA Rasmussen, H Dowling, JE J Gen Physiol Articles Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was recorded intracellularly. Superfusion with cGMP, Bu(2)GMP, isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor), or PGF(2α) (a prostaglandin) caused effects in rods that closely match those observed when extracellular Ca(2+) levels were lowered. For example, short exposures (up to 6 min) of the retina to these substances caused depolarization of the membrane potential, increase in response amplitudes, and some changes in waveform; but under dark-adapted or partially light-adapted conditions receptor sensitivity was virtually unaffected. That is, the position of the V-log I curve on the intensity axis was determined by the prevailing light level, not by drug level. These drugs, like lowered extracellular Ca(2+), also decreased the period of receptor saturation after a bright-adapting flash, resulting in an acceleration of the onset of membrane and sensitivity recovery during dark adaptation. Long-term (6-15 min) exposure of a dark-adapted retina to 5 mM IBMX or a combination of IBMX and cGMP caused a loss of response amplitude and a desensitization of the rods that was similar to that observed in rods after a long-term low Ca(2+) (10(-9)M) treatment. Application of high (3.2 mM) Ca(2+) to the retina blocked the effects of applied Bu(2)cGMP. PGE(1) superfusion mimicked the effects of increasing extracellular Ca(2+). The results show that increased cGMP and lowered Ca(2+) produce similar alterations in the electrical activity of rods. These findings suggest that Ca(2+) and cGMP are interrelated messengers. We speculate that low Ca(2+) may lead to increased intracellular cGMP, and/or that applied cGMP, and/or that applied cGMP may lower cytosol Ca(2+), perhaps by stimulating Ca(2+)- ATPase pumps in the outer segment. The Rockefeller University Press 1977-12-01 /pmc/articles/PMC2228513/ /pubmed/201724 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Lipton, SA
Rasmussen, H
Dowling, JE
Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title_full Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title_fullStr Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title_full_unstemmed Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title_short Electrical and adaptive properties of rod photoreceptors in bufo marinus. II. Effects of cyclic nucleotides and protaglandins
title_sort electrical and adaptive properties of rod photoreceptors in bufo marinus. ii. effects of cyclic nucleotides and protaglandins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228513/
https://www.ncbi.nlm.nih.gov/pubmed/201724
work_keys_str_mv AT liptonsa electricalandadaptivepropertiesofrodphotoreceptorsinbufomarinusiieffectsofcyclicnucleotidesandprotaglandins
AT rasmussenh electricalandadaptivepropertiesofrodphotoreceptorsinbufomarinusiieffectsofcyclicnucleotidesandprotaglandins
AT dowlingje electricalandadaptivepropertiesofrodphotoreceptorsinbufomarinusiieffectsofcyclicnucleotidesandprotaglandins