Cargando…

Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism

The kinetic properties of the nonmitochondrial ATP-dependent Ca sequestering mechanism in disrupted nerve terminal (synaptosome) preparations have been investigated with radioactive tracer techniques; all solutions contained DNP, NaN3, and oligomycin, to block mitochondrial Ca uptake. The apparent h...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228519/
https://www.ncbi.nlm.nih.gov/pubmed/702106
_version_ 1782149912385814528
collection PubMed
description The kinetic properties of the nonmitochondrial ATP-dependent Ca sequestering mechanism in disrupted nerve terminal (synaptosome) preparations have been investigated with radioactive tracer techniques; all solutions contained DNP, NaN3, and oligomycin, to block mitochondrial Ca uptake. The apparent half-saturation constant, KCa, for the nonmitochondrial Ca uptake is approximately 0.4 micrometer Ca; the Hill coefficient is approximately 1.6. Mg is also required for the Ca uptake, and the apparent KMg is approximately 80 micrometer. ATP and deoxy-ATP, but not CTP, GTP, ITP, UTP, ADP, or cyclic AMP, promote Ca uptake; the KATP, is approximately 10 micrometer. ATP analogs with blocked gamma-phosphate groups are unable to replace ATP. Particulate fractions from the disrupted synaptosomes possess Ca-dependent ATPase activity in the presence of Mg; the apparent KCa for this activity is 0.4--0.8 micrometer Ca, and the Hill coefficient is approximately 1.6. The Ca uptake and ATPase kinetic data suggest that the hydrolysis of 1 ATP may energize the transport of two Ca2+ ions into the storage vesicles. The second part of the article concerns the intraterminal distribution of Ca in "intact" terminals. When the terminals are disrupted after 45Ca loading, about one-half of the 45Ca is retained in the particulate material; some of this Ca, presumably stored in mitochondria, is released by the uncoupler, FCCP. Some of the 45Ca is released by A-23187, but not by FCCP; this fraction may be Ca stored in the nonmitochondrial sites described above. The proportion of 45Ca stored in the nonmitochondrial sites is increased when the Ca load is reduced or when the mitochondria are blocked with ruthenium red. These data indicate that the nonmitochondrial Ca storage sites are involved in intraterminal Ca buffering; they may play an important role in synaptic facilitation and post-tetanic potentiation, which result from Ca retention after neural activity.
format Text
id pubmed-2228519
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22285192008-04-23 Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism J Gen Physiol Articles The kinetic properties of the nonmitochondrial ATP-dependent Ca sequestering mechanism in disrupted nerve terminal (synaptosome) preparations have been investigated with radioactive tracer techniques; all solutions contained DNP, NaN3, and oligomycin, to block mitochondrial Ca uptake. The apparent half-saturation constant, KCa, for the nonmitochondrial Ca uptake is approximately 0.4 micrometer Ca; the Hill coefficient is approximately 1.6. Mg is also required for the Ca uptake, and the apparent KMg is approximately 80 micrometer. ATP and deoxy-ATP, but not CTP, GTP, ITP, UTP, ADP, or cyclic AMP, promote Ca uptake; the KATP, is approximately 10 micrometer. ATP analogs with blocked gamma-phosphate groups are unable to replace ATP. Particulate fractions from the disrupted synaptosomes possess Ca-dependent ATPase activity in the presence of Mg; the apparent KCa for this activity is 0.4--0.8 micrometer Ca, and the Hill coefficient is approximately 1.6. The Ca uptake and ATPase kinetic data suggest that the hydrolysis of 1 ATP may energize the transport of two Ca2+ ions into the storage vesicles. The second part of the article concerns the intraterminal distribution of Ca in "intact" terminals. When the terminals are disrupted after 45Ca loading, about one-half of the 45Ca is retained in the particulate material; some of this Ca, presumably stored in mitochondria, is released by the uncoupler, FCCP. Some of the 45Ca is released by A-23187, but not by FCCP; this fraction may be Ca stored in the nonmitochondrial sites described above. The proportion of 45Ca stored in the nonmitochondrial sites is increased when the Ca load is reduced or when the mitochondria are blocked with ruthenium red. These data indicate that the nonmitochondrial Ca storage sites are involved in intraterminal Ca buffering; they may play an important role in synaptic facilitation and post-tetanic potentiation, which result from Ca retention after neural activity. The Rockefeller University Press 1978-07-01 /pmc/articles/PMC2228519/ /pubmed/702106 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title_full Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title_fullStr Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title_full_unstemmed Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title_short Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism
title_sort calcium buffering in presynaptic nerve terminals. ii. kinetic properties of the nonmitochondrial ca sequestration mechanism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228519/
https://www.ncbi.nlm.nih.gov/pubmed/702106