Cargando…

Presynaptic potentials and facilitation of transmitter release in the squid giant synapse

Presynaptic potentials were studied during facilitation of transmitter release in the squid giant synapse. Changes in action potentials were found to cause some, but not all, of the facilitation during twin-pulse stimulation. During trains of action potentials, there were no progressive changes in p...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228551/
https://www.ncbi.nlm.nih.gov/pubmed/31412
Descripción
Sumario:Presynaptic potentials were studied during facilitation of transmitter release in the squid giant synapse. Changes in action potentials were found to cause some, but not all, of the facilitation during twin-pulse stimulation. During trains of action potentials, there were no progressive changes in presynaptic action potentials which could account for the growth of facilitation. Facilitation could still be detected in terminals which had undergone conditioning depolarization or hyperpolarization. Facilitation could be produced by small action potentials in low [Ca++]o and by small depolarizations in the presence of tetrodotoxin. Although the production of facilitation varied somewhat with presynaptic depolarization, nevertheless, approximately equal amounts of facilitation could be produced by depolarizations which caused the release of very different amounts of transmitter.