Cargando…

Cation selectivity of acetylcholine-activated ionic channel of frog endplate

Ionic selectivity of the acetylcholine-activated ionic channel of frog endplate membranes to various organic cations has been studied. The ratio of test cation permeability (PX) to sodium permeability (PNa) was estimated by two methods, one based on the measurements in test cation solutions of the a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228567/
https://www.ncbi.nlm.nih.gov/pubmed/315997
_version_ 1782149923605577728
collection PubMed
description Ionic selectivity of the acetylcholine-activated ionic channel of frog endplate membranes to various organic cations has been studied. The ratio of test cation permeability (PX) to sodium permeability (PNa) was estimated by two methods, one based on the measurements in test cation solutions of the amplitude of transient depolarization induced by iontophoretic application of acetylcholine, and the other on the measurements of the reversal potential for the membrane current induced by iontophoretic application of acetylcholine under voltage-clamp conditions. The endplate channel is relatively nonselective to various test cations. The permeabilities relative to Na are ammonium (1.71), formamidine (1.49), methylamine (1.39), hydrazine (1.35), and Li (0.76), as measured from the reversal potential for acetylcholine currents, and guanidine (0.74), aminoguanidine (0.20), methylguanidine (0), and choline (0) as measured from the amplitude of acetylcholine potential. Methylguanidine and aminoguanidine block the endplate channel with the apparent dissociation constants of 0.5 and 15 mM, respectively. Based on these data, the dimensions of selectivity filter of acetylcholine-activated channel appear to be slightly larger than those of the sodium channel of frog nodes and smaller than those of the epithelial membrane of gallbladder of frogs and rabbits.
format Text
id pubmed-2228567
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22285672008-04-23 Cation selectivity of acetylcholine-activated ionic channel of frog endplate J Gen Physiol Articles Ionic selectivity of the acetylcholine-activated ionic channel of frog endplate membranes to various organic cations has been studied. The ratio of test cation permeability (PX) to sodium permeability (PNa) was estimated by two methods, one based on the measurements in test cation solutions of the amplitude of transient depolarization induced by iontophoretic application of acetylcholine, and the other on the measurements of the reversal potential for the membrane current induced by iontophoretic application of acetylcholine under voltage-clamp conditions. The endplate channel is relatively nonselective to various test cations. The permeabilities relative to Na are ammonium (1.71), formamidine (1.49), methylamine (1.39), hydrazine (1.35), and Li (0.76), as measured from the reversal potential for acetylcholine currents, and guanidine (0.74), aminoguanidine (0.20), methylguanidine (0), and choline (0) as measured from the amplitude of acetylcholine potential. Methylguanidine and aminoguanidine block the endplate channel with the apparent dissociation constants of 0.5 and 15 mM, respectively. Based on these data, the dimensions of selectivity filter of acetylcholine-activated channel appear to be slightly larger than those of the sodium channel of frog nodes and smaller than those of the epithelial membrane of gallbladder of frogs and rabbits. The Rockefeller University Press 1979-11-01 /pmc/articles/PMC2228567/ /pubmed/315997 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title_full Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title_fullStr Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title_full_unstemmed Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title_short Cation selectivity of acetylcholine-activated ionic channel of frog endplate
title_sort cation selectivity of acetylcholine-activated ionic channel of frog endplate
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228567/
https://www.ncbi.nlm.nih.gov/pubmed/315997