Cargando…

Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit

The effect of repetitive stimulation on synaptic transmission was studied in the isolated superior cervical ganglion of the rabbit under conditions of reduced quantal content. Excitatory postsynaptic potentials (EPSP) were recorded with the sucrose gap technique to obtain estimates of transmitter re...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228594/
https://www.ncbi.nlm.nih.gov/pubmed/6251156
_version_ 1782149929904373760
collection PubMed
description The effect of repetitive stimulation on synaptic transmission was studied in the isolated superior cervical ganglion of the rabbit under conditions of reduced quantal content. Excitatory postsynaptic potentials (EPSP) were recorded with the sucrose gap technique to obtain estimates of transmitter release. Four components of increased transmitter release, with time constants of decay similar to those observed at the frog neuromuscular junction at 20 degrees C, were found in the ganglion at 34 degrees C: a first component of facilitation, which decayed with a time constant of 59 +/- 14 ms (mean +/- SD); a second component of facilitation, which decayed with a time constant of 388 +/- 97 ms; augmentation, which decayed with a time constant of 7.2 +/- 1 s; and potentiation, which decayed with a time constant of 88 +/- 25 s. The addition of 0.1-0.2 mM Ba2+ to the Locke solution increased the magnitude but not the time constant of decay of augmentation. Ba2+ had little effect on potentiation. The addition of 0.2-0.8 mM Sr2+ to the Locke solution appeared to increase the magnitude of the second component of facilitation. Sr2+ had little effect on augmentation or potentiation. These selective effects of Ba2+ and Sr2+ on the components of increased transmitter release in the rabbit ganglion are similar to the effects of these ions at the frog neuromuscular junction. Although the effects of Ba2+ and Sr2+ are similar in the two preparations, the magnitudes of augmentation and the second component of facilitation after a single impulse were about 6-10 times greater in the rabbit ganglion than at the frog neuromuscular junction. These results suggest that the underlying mechanisms in the nerve terminal that give rise to the components of increased transmitter release in the rabbit ganglion and frog neuromuscular junction are similar but not identical.
format Text
id pubmed-2228594
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22285942008-04-23 Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit J Gen Physiol Articles The effect of repetitive stimulation on synaptic transmission was studied in the isolated superior cervical ganglion of the rabbit under conditions of reduced quantal content. Excitatory postsynaptic potentials (EPSP) were recorded with the sucrose gap technique to obtain estimates of transmitter release. Four components of increased transmitter release, with time constants of decay similar to those observed at the frog neuromuscular junction at 20 degrees C, were found in the ganglion at 34 degrees C: a first component of facilitation, which decayed with a time constant of 59 +/- 14 ms (mean +/- SD); a second component of facilitation, which decayed with a time constant of 388 +/- 97 ms; augmentation, which decayed with a time constant of 7.2 +/- 1 s; and potentiation, which decayed with a time constant of 88 +/- 25 s. The addition of 0.1-0.2 mM Ba2+ to the Locke solution increased the magnitude but not the time constant of decay of augmentation. Ba2+ had little effect on potentiation. The addition of 0.2-0.8 mM Sr2+ to the Locke solution appeared to increase the magnitude of the second component of facilitation. Sr2+ had little effect on augmentation or potentiation. These selective effects of Ba2+ and Sr2+ on the components of increased transmitter release in the rabbit ganglion are similar to the effects of these ions at the frog neuromuscular junction. Although the effects of Ba2+ and Sr2+ are similar in the two preparations, the magnitudes of augmentation and the second component of facilitation after a single impulse were about 6-10 times greater in the rabbit ganglion than at the frog neuromuscular junction. These results suggest that the underlying mechanisms in the nerve terminal that give rise to the components of increased transmitter release in the rabbit ganglion and frog neuromuscular junction are similar but not identical. The Rockefeller University Press 1980-08-01 /pmc/articles/PMC2228594/ /pubmed/6251156 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title_full Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title_fullStr Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title_full_unstemmed Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title_short Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
title_sort facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228594/
https://www.ncbi.nlm.nih.gov/pubmed/6251156