Cargando…
Active and passive electrical properties of single bullfrog atrial cells
Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cell...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1981
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228627/ https://www.ncbi.nlm.nih.gov/pubmed/6973007 |
_version_ | 1782149937612455936 |
---|---|
collection | PubMed |
description | Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cells via phase-contrast or Nomarski optics (magnification, 400--600) indicates that cells range between 150 and 350 micrometers in length and 4 and 7 micrometers in diameter. The mean sarcomere length in relaxed, quiescent atrial cells in 2.05 micrometer. Conventional electrophysiological measurements have been made. In normal Ringer's solution (2.5 mM K+, 2.5 mM Ca++) acceptable cells have stable resting potentials of about -88 mV, and large (125 mV) long- duration (approximately 720 ms) action potentials can be elicited. The Vm vs. log[K+]0 relation obtained from isolated cells is similar to that of the intact atrium. The depolarizing phase of the action potential of isolated atrial myocytes exhibits two pharmacologically separable components: tetrodotoxin (10(-6) g/ml) markedly suppresses the initial regenerative depolarization, whereas verapamil (3 x 10(-6) M) inhibits the secondary depolarization and reduce the plateau height. A bridge circuit was used to estimate the input resistance (220 +/- 7 M omega) and time constant 20 +/- 7 ms) of these cells. Two- microelectrode experiments have revealed small differences in the electrotonic potentials recorded simultaneously at two different sites within a single cell. The equations for a linear, short cable were used to calculate the electrical constants of relaxed, single atrial cells: lambda = 921.3 +/- 29.5 micrometers; Ri = 118.1 +/- 24.5 omega cm; Rm = 7.9 +/- 1.2 x 10(3) omega cm2; Cm = 2.2 +/- 0.3 mu Fcm-2. These results and the atrial cell morphology suggest that this preparation may be particularly suitable for voltage-clamp studies. |
format | Text |
id | pubmed-2228627 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1981 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22286272008-04-23 Active and passive electrical properties of single bullfrog atrial cells J Gen Physiol Articles Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cells via phase-contrast or Nomarski optics (magnification, 400--600) indicates that cells range between 150 and 350 micrometers in length and 4 and 7 micrometers in diameter. The mean sarcomere length in relaxed, quiescent atrial cells in 2.05 micrometer. Conventional electrophysiological measurements have been made. In normal Ringer's solution (2.5 mM K+, 2.5 mM Ca++) acceptable cells have stable resting potentials of about -88 mV, and large (125 mV) long- duration (approximately 720 ms) action potentials can be elicited. The Vm vs. log[K+]0 relation obtained from isolated cells is similar to that of the intact atrium. The depolarizing phase of the action potential of isolated atrial myocytes exhibits two pharmacologically separable components: tetrodotoxin (10(-6) g/ml) markedly suppresses the initial regenerative depolarization, whereas verapamil (3 x 10(-6) M) inhibits the secondary depolarization and reduce the plateau height. A bridge circuit was used to estimate the input resistance (220 +/- 7 M omega) and time constant 20 +/- 7 ms) of these cells. Two- microelectrode experiments have revealed small differences in the electrotonic potentials recorded simultaneously at two different sites within a single cell. The equations for a linear, short cable were used to calculate the electrical constants of relaxed, single atrial cells: lambda = 921.3 +/- 29.5 micrometers; Ri = 118.1 +/- 24.5 omega cm; Rm = 7.9 +/- 1.2 x 10(3) omega cm2; Cm = 2.2 +/- 0.3 mu Fcm-2. These results and the atrial cell morphology suggest that this preparation may be particularly suitable for voltage-clamp studies. The Rockefeller University Press 1981-07-01 /pmc/articles/PMC2228627/ /pubmed/6973007 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Active and passive electrical properties of single bullfrog atrial cells |
title | Active and passive electrical properties of single bullfrog atrial cells |
title_full | Active and passive electrical properties of single bullfrog atrial cells |
title_fullStr | Active and passive electrical properties of single bullfrog atrial cells |
title_full_unstemmed | Active and passive electrical properties of single bullfrog atrial cells |
title_short | Active and passive electrical properties of single bullfrog atrial cells |
title_sort | active and passive electrical properties of single bullfrog atrial cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228627/ https://www.ncbi.nlm.nih.gov/pubmed/6973007 |