Cargando…

Sodium transport effects on the basolateral membrane in toad urinary bladder

In toad urinary bladder epithelium, inhibition of Na transport with amiloride causes a decrease in the apical (Vmc) and basolateral (Vcs) membrane potentials. In addition to increasing apical membrane resistance (Ra), amiloride also causes an increase in basolateral membrane resistance (Rb), with a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228639/
https://www.ncbi.nlm.nih.gov/pubmed/6816901
_version_ 1782149940512817152
collection PubMed
description In toad urinary bladder epithelium, inhibition of Na transport with amiloride causes a decrease in the apical (Vmc) and basolateral (Vcs) membrane potentials. In addition to increasing apical membrane resistance (Ra), amiloride also causes an increase in basolateral membrane resistance (Rb), with a time course such that Ra/Rb does not change for 1-2 min. At longer times after amiloride (3-4 min), Ra/Rb rises from its control values to its amiloride steady state values through a secondary decrease in Rb. Analysis of an equivalent electrical circuit of the epithelium shows that the depolarization of Vcs is due to a decrease in basolateral electromotive force (Vb). To see of the changes in Vcs and Rb are correlated with a decrease in Na transport, external current (Ie) was used to clamp Vmc to zero, and the effects of amiloride on the portion of Ie that takes the transcellular pathway were determined. In these studies, Vcs also depolarized, which suggests that the decrease in Vb was due to a decrease in the current output of a rheogenic Na pump. Thus, the basolateral membrane does not behave like an ohmic resistor. In contrast, when transport is inhibited during basolateral membrane voltage clamping, the apical membrane voltage changes are those predicted for a simple, passive (i.e., ohmic) element.
format Text
id pubmed-2228639
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22286392008-04-23 Sodium transport effects on the basolateral membrane in toad urinary bladder J Gen Physiol Articles In toad urinary bladder epithelium, inhibition of Na transport with amiloride causes a decrease in the apical (Vmc) and basolateral (Vcs) membrane potentials. In addition to increasing apical membrane resistance (Ra), amiloride also causes an increase in basolateral membrane resistance (Rb), with a time course such that Ra/Rb does not change for 1-2 min. At longer times after amiloride (3-4 min), Ra/Rb rises from its control values to its amiloride steady state values through a secondary decrease in Rb. Analysis of an equivalent electrical circuit of the epithelium shows that the depolarization of Vcs is due to a decrease in basolateral electromotive force (Vb). To see of the changes in Vcs and Rb are correlated with a decrease in Na transport, external current (Ie) was used to clamp Vmc to zero, and the effects of amiloride on the portion of Ie that takes the transcellular pathway were determined. In these studies, Vcs also depolarized, which suggests that the decrease in Vb was due to a decrease in the current output of a rheogenic Na pump. Thus, the basolateral membrane does not behave like an ohmic resistor. In contrast, when transport is inhibited during basolateral membrane voltage clamping, the apical membrane voltage changes are those predicted for a simple, passive (i.e., ohmic) element. The Rockefeller University Press 1982-11-01 /pmc/articles/PMC2228639/ /pubmed/6816901 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Sodium transport effects on the basolateral membrane in toad urinary bladder
title Sodium transport effects on the basolateral membrane in toad urinary bladder
title_full Sodium transport effects on the basolateral membrane in toad urinary bladder
title_fullStr Sodium transport effects on the basolateral membrane in toad urinary bladder
title_full_unstemmed Sodium transport effects on the basolateral membrane in toad urinary bladder
title_short Sodium transport effects on the basolateral membrane in toad urinary bladder
title_sort sodium transport effects on the basolateral membrane in toad urinary bladder
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228639/
https://www.ncbi.nlm.nih.gov/pubmed/6816901