Cargando…

Block of squid axon K channels by internally and externally applied barium ions

We have studied the interactions of Ba ion with K channels. Ba2+ blocks these channels when applied either internally or externally in millimolar concentrations. Periodic depolarizations enhance block with internal Ba2+, but diminish the block caused by external Ba2+. At rest, dissociation of Ba2+ f...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228645/
https://www.ncbi.nlm.nih.gov/pubmed/6294220
_version_ 1782149941903228928
collection PubMed
description We have studied the interactions of Ba ion with K channels. Ba2+ blocks these channels when applied either internally or externally in millimolar concentrations. Periodic depolarizations enhance block with internal Ba2+, but diminish the block caused by external Ba2+. At rest, dissociation of Ba2+ from blocked channels is very slow, as ascertained by infrequent test pulses applied after washing Ba2+ form either inside or outside. The time constant for recovery from internal and external Ba2+ is the same. Frequent pulsing greatly shortens recovery time constant after washing away both Ba2+in and Ba2+out. Block by Ba2+ applied internally or externally is voltage dependent. Internal Ba2+ block behaves like a one-step reaction governed by a dissociation constant (Kd) that decreases e-fold/12 mV increase of pulse voltage: block deepens with more positive pulse voltage. For external Ba2+, Kd decreases e-fold/18 mV as holding potential is made more negative: block deepens with increasing negativity. Millimolar external concentrations of some cations can either lessen (K+) or enhance (NH+4, Cs+) block by external Ba2+. NH+4 apparently enhances block by slowing exist of Ba ions from the channels. Rb+ and Cs+ also slow clearing of Ba ions from channels. We think that (a) internally applied Ba2+ moves all the way through the channels, entering only when activation gates are open; (b) externally applied Ba2+ moves two-thirds of the way in, entering predominantly when activation gates are closed; (c) at a given voltage, Ba2+ occupies the same position in the channels whether it entered from inside or outside.
format Text
id pubmed-2228645
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22286452008-04-23 Block of squid axon K channels by internally and externally applied barium ions J Gen Physiol Articles We have studied the interactions of Ba ion with K channels. Ba2+ blocks these channels when applied either internally or externally in millimolar concentrations. Periodic depolarizations enhance block with internal Ba2+, but diminish the block caused by external Ba2+. At rest, dissociation of Ba2+ from blocked channels is very slow, as ascertained by infrequent test pulses applied after washing Ba2+ form either inside or outside. The time constant for recovery from internal and external Ba2+ is the same. Frequent pulsing greatly shortens recovery time constant after washing away both Ba2+in and Ba2+out. Block by Ba2+ applied internally or externally is voltage dependent. Internal Ba2+ block behaves like a one-step reaction governed by a dissociation constant (Kd) that decreases e-fold/12 mV increase of pulse voltage: block deepens with more positive pulse voltage. For external Ba2+, Kd decreases e-fold/18 mV as holding potential is made more negative: block deepens with increasing negativity. Millimolar external concentrations of some cations can either lessen (K+) or enhance (NH+4, Cs+) block by external Ba2+. NH+4 apparently enhances block by slowing exist of Ba ions from the channels. Rb+ and Cs+ also slow clearing of Ba ions from channels. We think that (a) internally applied Ba2+ moves all the way through the channels, entering only when activation gates are open; (b) externally applied Ba2+ moves two-thirds of the way in, entering predominantly when activation gates are closed; (c) at a given voltage, Ba2+ occupies the same position in the channels whether it entered from inside or outside. The Rockefeller University Press 1982-11-01 /pmc/articles/PMC2228645/ /pubmed/6294220 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Block of squid axon K channels by internally and externally applied barium ions
title Block of squid axon K channels by internally and externally applied barium ions
title_full Block of squid axon K channels by internally and externally applied barium ions
title_fullStr Block of squid axon K channels by internally and externally applied barium ions
title_full_unstemmed Block of squid axon K channels by internally and externally applied barium ions
title_short Block of squid axon K channels by internally and externally applied barium ions
title_sort block of squid axon k channels by internally and externally applied barium ions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228645/
https://www.ncbi.nlm.nih.gov/pubmed/6294220