Cargando…

Effect of Ca2+, cyclic GMP, and cyclic AMP added to artificial solution perfusing lingual artery on frog gustatory nerve responses

The lingual artery of the bullfrog was perfused with artificial solution and the effects of Ca2+, Ca-channel blockers (MnCl2 and verapamil), cGMP, and cAMP added to the perfusing solution of the gustatory nerve responses were examined. The responses to chemical stimuli of group 1 (CaCl2, NaCl, disti...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228646/
https://www.ncbi.nlm.nih.gov/pubmed/6294223
Descripción
Sumario:The lingual artery of the bullfrog was perfused with artificial solution and the effects of Ca2+, Ca-channel blockers (MnCl2 and verapamil), cGMP, and cAMP added to the perfusing solution of the gustatory nerve responses were examined. The responses to chemical stimuli of group 1 (CaCl2, NaCl, distilled water, D-galactose, and L- threonine) applied to the tongue surface were greatly decreased by a decrease in Ca2+ concentration in the perfusing solution, suppressed by the Ca-channel blockers, enhanced by cGMP, and suppressed by cAMP. The responses to chemical stimuli of group 2 (quinine hydrochloride, theophylline, ethanol, and HCl) were practically not affected by a decrease in Ca2+ concentration, the Ca-channel blockers, cGMP, and cAMP. The responses to the stimuli of group 1 seem to be induced by Ca influx into a taste cell that is triggered by depolarization and modulated by the cyclic nucleotides in a taste cell. The responses to group 2 seem to be induced without accompanying Ca influx.