Cargando…

A stepwise mechanism for the permeation of phloretin through a lipid bilayer

The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an associati...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1982
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228705/
https://www.ncbi.nlm.nih.gov/pubmed/7142954
_version_ 1782149955840901120
collection PubMed
description The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an association rate constant greater than 10(8) M-1s-1, and an interfacial activation free energy of less than 2 kcal/mol. Equilibrium binding of phloretin to a vesicle membrane is characterized by a single class of high-affinity (8 micro M), noninteracting sites. Binding is enthalpy driven (delta H = -4.9 kcal/mol) at 23 degrees C. Analysis of amplitudes of kinetic processes shows that 66 +/- 3% of total phloretin binding sites are exposed at the external vesicle surface. The rate of phloretin movement between binding sites located near the external and internal interfaces is proportional to the concentration of un-ionized phloretin, with a rate constant of 5.7 X 10(4) M-1s-1 at 23 degrees C. The rate of this process is limited by a large enthalpic (9 kcal/mol) and entropic (-31 entropy units) barrier. An analysis of the concentration dependence of the rate of transmembrane movement suggests the presence of multiple intramembrane potential barriers. Permeation of phloretin through a lipid bilayer is modeled quantitatively in terms of discrete steps: binding to a membrane surface, translocation across a series of intramembrane barriers, and dissociation from the opposite membrane surface. The permeability coefficient for phloretin is calculated as 1.9 X 10(-3) cm/s on the basis of the model presented. Structure- function relationships are examined for a number of phloretin analogues.
format Text
id pubmed-2228705
institution National Center for Biotechnology Information
language English
publishDate 1982
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22287052008-04-23 A stepwise mechanism for the permeation of phloretin through a lipid bilayer J Gen Physiol Articles The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an association rate constant greater than 10(8) M-1s-1, and an interfacial activation free energy of less than 2 kcal/mol. Equilibrium binding of phloretin to a vesicle membrane is characterized by a single class of high-affinity (8 micro M), noninteracting sites. Binding is enthalpy driven (delta H = -4.9 kcal/mol) at 23 degrees C. Analysis of amplitudes of kinetic processes shows that 66 +/- 3% of total phloretin binding sites are exposed at the external vesicle surface. The rate of phloretin movement between binding sites located near the external and internal interfaces is proportional to the concentration of un-ionized phloretin, with a rate constant of 5.7 X 10(4) M-1s-1 at 23 degrees C. The rate of this process is limited by a large enthalpic (9 kcal/mol) and entropic (-31 entropy units) barrier. An analysis of the concentration dependence of the rate of transmembrane movement suggests the presence of multiple intramembrane potential barriers. Permeation of phloretin through a lipid bilayer is modeled quantitatively in terms of discrete steps: binding to a membrane surface, translocation across a series of intramembrane barriers, and dissociation from the opposite membrane surface. The permeability coefficient for phloretin is calculated as 1.9 X 10(-3) cm/s on the basis of the model presented. Structure- function relationships are examined for a number of phloretin analogues. The Rockefeller University Press 1982-10-01 /pmc/articles/PMC2228705/ /pubmed/7142954 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title_full A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title_fullStr A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title_full_unstemmed A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title_short A stepwise mechanism for the permeation of phloretin through a lipid bilayer
title_sort stepwise mechanism for the permeation of phloretin through a lipid bilayer
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228705/
https://www.ncbi.nlm.nih.gov/pubmed/7142954