Cargando…

Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes

The rates of anion net efflux from gramicidin-treated erythrocytes in the presence of a K gradient were measured at 25 degrees C, pH 7.8, as rates of loss of Ki. The experiments served to estimate the relative contributions of two hypothetical mechanisms to Cl net efflux at low extracellular Cl conc...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228771/
https://www.ncbi.nlm.nih.gov/pubmed/6084046
_version_ 1782149971563249664
collection PubMed
description The rates of anion net efflux from gramicidin-treated erythrocytes in the presence of a K gradient were measured at 25 degrees C, pH 7.8, as rates of loss of Ki. The experiments served to estimate the relative contributions of two hypothetical mechanisms to Cl net efflux at low extracellular Cl concentrations. Cl, Br, and NO3 net effluxes were measured into media of different Cl, Br, or NO3 concentrations, respectively, to determine and compare the relative rates of the extracellular anion-inhibitable components. They were 48, 160, and 230 mmol/(kg Hb X min), respectively, at a membrane potential of about -90 mV. This indicates that the anion-inhibitable efflux is not due solely to the return translocation of the empty transport site ("slippage") because slippage should be independent of the chemical nature of the anion. Cl net efflux was also measured as a function of the intracellular Cl concentration into media containing either 0 or 50 mM Cl. Under both conditions, net efflux was linearly dependent on Cli between 30 and 300 mM Cli and was 0 when back-extrapolated to 0 Cli. This observation is not compatible with the slippage process, which under these conditions would have been expected to be independent of Cli above 15 mM Cli. It was concluded that slippage contributes negligibly to Cl net efflux even at low extracellular anion concentrations and that the alternative process of "tunneling"--that is, movement of the anion through the anion transporter without a conformational change in a channel-type behavior--is the major, if not the sole, mechanism underlying Cl conductance.
format Text
id pubmed-2228771
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22287712008-04-23 Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes J Gen Physiol Articles The rates of anion net efflux from gramicidin-treated erythrocytes in the presence of a K gradient were measured at 25 degrees C, pH 7.8, as rates of loss of Ki. The experiments served to estimate the relative contributions of two hypothetical mechanisms to Cl net efflux at low extracellular Cl concentrations. Cl, Br, and NO3 net effluxes were measured into media of different Cl, Br, or NO3 concentrations, respectively, to determine and compare the relative rates of the extracellular anion-inhibitable components. They were 48, 160, and 230 mmol/(kg Hb X min), respectively, at a membrane potential of about -90 mV. This indicates that the anion-inhibitable efflux is not due solely to the return translocation of the empty transport site ("slippage") because slippage should be independent of the chemical nature of the anion. Cl net efflux was also measured as a function of the intracellular Cl concentration into media containing either 0 or 50 mM Cl. Under both conditions, net efflux was linearly dependent on Cli between 30 and 300 mM Cli and was 0 when back-extrapolated to 0 Cli. This observation is not compatible with the slippage process, which under these conditions would have been expected to be independent of Cli above 15 mM Cli. It was concluded that slippage contributes negligibly to Cl net efflux even at low extracellular anion concentrations and that the alternative process of "tunneling"--that is, movement of the anion through the anion transporter without a conformational change in a channel-type behavior--is the major, if not the sole, mechanism underlying Cl conductance. The Rockefeller University Press 1984-12-01 /pmc/articles/PMC2228771/ /pubmed/6084046 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title_full Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title_fullStr Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title_full_unstemmed Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title_short Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
title_sort relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228771/
https://www.ncbi.nlm.nih.gov/pubmed/6084046