Cargando…

Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 triphosphate result from a rise in intracellular calcium

Single pressure injections of 1-10 pl of inositol 1,4,5 triphosphate (IP3) or inositol 4,5 bisphosphate [I(4,5)P2] excite Limulus ventral photoreceptors by inducing rapid bursts of inward current. After excitation by IP3, responses to subsequent injections of IP3 or light flashes are often reversibl...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228785/
https://www.ncbi.nlm.nih.gov/pubmed/3488368
Descripción
Sumario:Single pressure injections of 1-10 pl of inositol 1,4,5 triphosphate (IP3) or inositol 4,5 bisphosphate [I(4,5)P2] excite Limulus ventral photoreceptors by inducing rapid bursts of inward current. After excitation by IP3, responses to subsequent injections of IP3 or light flashes are often reversibly diminished (adapted). Single injections of IP3 and I(4,5)P2 are effective at concentrations in the injecting pipette of 20 microM to 1 mM. Single injections of inositol 1,4 bisphosphate are ineffective at concentrations of 100-500 microM. Excitation by IP3 or I(4,5)P2 is accompanied by a rise in intracellular free calcium, as indicated by aequorin luminescence. Prior injection of calcium buffer solutions containing 100 mM EGTA greatly diminishes the total charge transferred across the plasma membrane during excitation by IP3 or I(4,5)P2, which suggests that a rise in Cai is necessary for excitation by the inositol polyphosphates. Adaptation of the response to light by IP3 is also abolished by prior injection of EGTA. In the same cells, the response to brief light flashes is slowed and diminished in amplitude by the injection of calcium buffer, but the charge transferred during the response is not significantly diminished. This suggests that light has access to a pathway of excitation in the presence of EGTA that is not accessible to intracellularly injected IP3.