Cargando…

Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process

In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluoresce...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1985
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228817/
https://www.ncbi.nlm.nih.gov/pubmed/2999293
_version_ 1782149982501994496
collection PubMed
description In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. Calibration was accomplished using nigericin with high extracellular potassium concentrations. When luminal and peritubular fluids were pH 7.32, cell pH was 7.14 +/- 0.01. Decreasing peritubular pH from 7.32 to 6.63 caused cell pH to decrease from 7.16 +/- 0.02 to 6.90 +/- 0.03. This effect occurred at an initial rate of 2.4 +/- 0.3 pH units/min, and was inhibited by 0.5 mM SITS. Lowering the peritubular sodium concentration from 147 to 25 meq/liter caused cell pH to decrease from 7.20 +/- 0.03 to 6.99 +/- 0.01. The effect of peritubular sodium concentration on cell pH was inhibited by 0.5 mM SITS, but was unaffected by 1 mM amiloride. In addition, when peritubular pH was decreased in the total absence of luminal and peritubular sodium, the rate of cell acidification was 0.2 +/- 0.1 pH units/min, a greater than 90% decrease from that in the presence of sodium. Cell depolarization achieved by increasing the peritubular potassium concentration caused cell pH to increase, an effect that was blocked by peritubular barium or luminal and peritubular sodium removal. Lowering the peritubular chloride concentration from 128 to 0 meq/liter did not affect cell pH. These results suggest the existence of an electrogenic, sodium-coupled H+/OH- /HCO-3 transport mechanism on the basolateral membrane of the rat proximal convoluted tubule.
format Text
id pubmed-2228817
institution National Center for Biotechnology Information
language English
publishDate 1985
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22288172008-04-23 Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process J Gen Physiol Articles In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. Calibration was accomplished using nigericin with high extracellular potassium concentrations. When luminal and peritubular fluids were pH 7.32, cell pH was 7.14 +/- 0.01. Decreasing peritubular pH from 7.32 to 6.63 caused cell pH to decrease from 7.16 +/- 0.02 to 6.90 +/- 0.03. This effect occurred at an initial rate of 2.4 +/- 0.3 pH units/min, and was inhibited by 0.5 mM SITS. Lowering the peritubular sodium concentration from 147 to 25 meq/liter caused cell pH to decrease from 7.20 +/- 0.03 to 6.99 +/- 0.01. The effect of peritubular sodium concentration on cell pH was inhibited by 0.5 mM SITS, but was unaffected by 1 mM amiloride. In addition, when peritubular pH was decreased in the total absence of luminal and peritubular sodium, the rate of cell acidification was 0.2 +/- 0.1 pH units/min, a greater than 90% decrease from that in the presence of sodium. Cell depolarization achieved by increasing the peritubular potassium concentration caused cell pH to increase, an effect that was blocked by peritubular barium or luminal and peritubular sodium removal. Lowering the peritubular chloride concentration from 128 to 0 meq/liter did not affect cell pH. These results suggest the existence of an electrogenic, sodium-coupled H+/OH- /HCO-3 transport mechanism on the basolateral membrane of the rat proximal convoluted tubule. The Rockefeller University Press 1985-11-01 /pmc/articles/PMC2228817/ /pubmed/2999293 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title_full Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title_fullStr Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title_full_unstemmed Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title_short Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process
title_sort mechanism of basolateral membrane h+/oh-/hco-3 transport in the rat proximal convoluted tubule. a sodium-coupled electrogenic process
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228817/
https://www.ncbi.nlm.nih.gov/pubmed/2999293