Cargando…
Guanidine block of single channel currents activated by acetylcholine
The acetylcholine-activated channel of chick myotube was studied using the patch-clamp method. Single channel current amplitudes were measured between -300 and +250 mV in solutions containing the permeant ions Cs+ and guanidine (G+). G+ has a relative permeability, PG/PCs, of 1.6, but carries no mor...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228854/ https://www.ncbi.nlm.nih.gov/pubmed/2431099 |
_version_ | 1782149991152746496 |
---|---|
collection | PubMed |
description | The acetylcholine-activated channel of chick myotube was studied using the patch-clamp method. Single channel current amplitudes were measured between -300 and +250 mV in solutions containing the permeant ions Cs+ and guanidine (G+). G+ has a relative permeability, PG/PCs, of 1.6, but carries no more than half the current that Cs+ does, with an equivalent electrochemical driving force. Experiments using G+ revealed an asymmetry of the acetylcholine-activated channel, with G+ being more effective at reducing Cs+ currents when added to the outside than when added to the inside. The block caused by outside, but not inside, G+ was evident for both inward and outward currents. The block caused by outside G+ was voltage dependent, first increasing and then being partially relieved when the driving force was made more negative. Experiments with mixtures of Cs+ and G+ revealed anomalously low magnitudes for reversal potentials, relative to predictions based on the Goldman-Hodgkin-Katz equation. These findings are consistent with a two-well, three-barrier Eyring rate model for ion flow, and demonstrate that a highly permeant ion, guanidine, can block asymmetrically by acting from within the voltage field of the acetylcholine-activated channel. |
format | Text |
id | pubmed-2228854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1986 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22288542008-04-23 Guanidine block of single channel currents activated by acetylcholine J Gen Physiol Articles The acetylcholine-activated channel of chick myotube was studied using the patch-clamp method. Single channel current amplitudes were measured between -300 and +250 mV in solutions containing the permeant ions Cs+ and guanidine (G+). G+ has a relative permeability, PG/PCs, of 1.6, but carries no more than half the current that Cs+ does, with an equivalent electrochemical driving force. Experiments using G+ revealed an asymmetry of the acetylcholine-activated channel, with G+ being more effective at reducing Cs+ currents when added to the outside than when added to the inside. The block caused by outside, but not inside, G+ was evident for both inward and outward currents. The block caused by outside G+ was voltage dependent, first increasing and then being partially relieved when the driving force was made more negative. Experiments with mixtures of Cs+ and G+ revealed anomalously low magnitudes for reversal potentials, relative to predictions based on the Goldman-Hodgkin-Katz equation. These findings are consistent with a two-well, three-barrier Eyring rate model for ion flow, and demonstrate that a highly permeant ion, guanidine, can block asymmetrically by acting from within the voltage field of the acetylcholine-activated channel. The Rockefeller University Press 1986-11-01 /pmc/articles/PMC2228854/ /pubmed/2431099 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Guanidine block of single channel currents activated by acetylcholine |
title | Guanidine block of single channel currents activated by acetylcholine |
title_full | Guanidine block of single channel currents activated by acetylcholine |
title_fullStr | Guanidine block of single channel currents activated by acetylcholine |
title_full_unstemmed | Guanidine block of single channel currents activated by acetylcholine |
title_short | Guanidine block of single channel currents activated by acetylcholine |
title_sort | guanidine block of single channel currents activated by acetylcholine |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228854/ https://www.ncbi.nlm.nih.gov/pubmed/2431099 |