Cargando…
A time-dependent and voltage-sensitive K+ current in single cells from frog atrium
A quantitative description of the time-dependent and voltage-sensitive outward currents in heart has been hampered by the complications inherent to the multicellular preparations previously used. We have used the whole-cell patch-clamp technique to record the delayed outward K+ current, IK, in singl...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228856/ https://www.ncbi.nlm.nih.gov/pubmed/2432157 |
Sumario: | A quantitative description of the time-dependent and voltage-sensitive outward currents in heart has been hampered by the complications inherent to the multicellular preparations previously used. We have used the whole-cell patch-clamp technique to record the delayed outward K+ current, IK, in single cells dissociated from frog atrium. Na+ currents were blocked with tetrodotoxin and Ca2+ currents with Mn2+ or Cd2+. After depolarizations from -50 mV to potentials positive to -30 mV, a time-dependent outward current was observed. This current has been characterized according to its steady state activation, kinetics, and ion transfer function. The current is well described as a single Hodgkin-Huxley conductance. The deactivation of the current is a single exponential. Activation of the current is sigmoid and is fitted well by raising the activation variable to the second power. The reversal potential of IK is near EK and shifts by 57 mV/10-fold change in [K+]o. This suggests that the current is carried selectively by K ions. The threshold for activation is near -30 mV. IK is maximally activated positive to +20 mV and shows no inactivation. The fully activated current-voltage relationship is linear between -110 and +50 mV. Neither Ba2+ (250 microM) nor Cd2+ (100 microM) affects IK. |
---|