Cargando…

An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes

For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228859/
https://www.ncbi.nlm.nih.gov/pubmed/3794637
_version_ 1782149992326103040
collection PubMed
description For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).
format Text
id pubmed-2228859
institution National Center for Biotechnology Information
language English
publishDate 1986
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22288592008-04-23 An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes J Gen Physiol Articles For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues). The Rockefeller University Press 1986-12-01 /pmc/articles/PMC2228859/ /pubmed/3794637 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title_full An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title_fullStr An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title_full_unstemmed An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title_short An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
title_sort experimental test of new theoretical models for the electrokinetic properties of biological membranes. the effect of uo2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228859/
https://www.ncbi.nlm.nih.gov/pubmed/3794637