Cargando…
Effects of hydrostatic pressure on membrane processes. Sodium channels, calcium channels, and exocytosis
A patch-clamp study under high hydrostatic pressure was performed by transferring cells or membrane patches into a pressure vessel (Heinemann, S. H., W. Stuhmer, and F. Conti, 1987, Proceedings of the National Academy of Sciences, 84:3229-3233). Whole-cell Na currents as well as Ca currents were mea...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1987
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228882/ https://www.ncbi.nlm.nih.gov/pubmed/2450167 |
Sumario: | A patch-clamp study under high hydrostatic pressure was performed by transferring cells or membrane patches into a pressure vessel (Heinemann, S. H., W. Stuhmer, and F. Conti, 1987, Proceedings of the National Academy of Sciences, 84:3229-3233). Whole-cell Na currents as well as Ca currents were measured at pressures up to 40 MPa (approximately 400 atm; 1 MPa = 9.87 atm) in bovine adrenal chromaffin cells. Ca currents were found to be independent of pressure within experimental resolution. The mean amplitude and the gating kinetics of Na currents were affected by less than 20% at 10 MPa. This lack of a pronounced effect is surprising since the high-pressure nervous syndrome (HPNS), a disorder at high pressures known to result from impaired nervous transmission, manifests itself at pressures as low as 5 MPa. The results show that ion channels involved in transmission cannot be implicated in HPNS. However, when exocytosis was studied at high pressure by monitoring the cell capacitance (Neher, E., and A. Marty, 1982, Proceedings of the National Academy of Sciences, 79:6712- 6716), more drastic effects were seen. The degranulation evoked by dialyzing the cell with 1 microM free Ca2+ could be slowed by a factor of 2 by application of 10 MPa. The same effect was observed for the degranulation of rat peritoneal mast cells stimulated with 40 microM of the GTP analogue GTP-gamma-S. According to these results, the process of exocytosis is the most likely site at which hydrostatic pressure can act to produce nervous disorders. Furthermore, we demonstrate that pressure can be a useful tool in the investigation of other cellular responses, since we were able to separate different steps occurring during exocytosis owing to their different activation volumes. |
---|