Cargando…

Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles

In this paper we investigate the effects of caffeine (5-20 mM) on ferret papillary muscle. The intracellular Ca2+ concentration ( [Ca2+]i) was measured from the light emitted by the photoprotein aequorin, which had previously been microinjected into superficial cells. Isometric tension was measured...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228902/
https://www.ncbi.nlm.nih.gov/pubmed/3225553
_version_ 1782150002472124416
collection PubMed
description In this paper we investigate the effects of caffeine (5-20 mM) on ferret papillary muscle. The intracellular Ca2+ concentration ( [Ca2+]i) was measured from the light emitted by the photoprotein aequorin, which had previously been microinjected into superficial cells. Isometric tension was measured simultaneously. The rapid application of caffeine produced a transient increase of [Ca2+]i, which decayed spontaneously within 2-3 s and was accompanied by a transient contracture. The removal of extracellular Na+ or an increase in the concentration of intracellular Na+ (produced by strophanthidin) increased the magnitude of the caffeine response. Cessation of stimulation for several minutes or stimulation at low rates decreased the magnitude of the stimulated twitch and Ca2+ transient. These maneuvers also decreased the size of the caffeine response. These results are consistent with the hypothesis that the caffeine-releasable pool of Ca2+ (sarcoplasmic reticulum) is modulated by maneuvers that affect contraction. Ryanodine (10 microM) decreased the magnitude of the caffeine response as well as that of the stimulated twitch. In contrast, the rapid removal of external Ca2+ abolished the systolic Ca2+ transient within 5 s, but had no effect on the caffeine response. From this we conclude that the abolition of twitch by Ca2+-free solutions is not due to depletion of the sarcoplasmic reticulum of Ca2+, but may be due to a requirement of Ca2+ entry into the cell to trigger Ca2+ release from the sarcoplasmic reticulum.
format Text
id pubmed-2228902
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22289022008-04-23 Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles J Gen Physiol Articles In this paper we investigate the effects of caffeine (5-20 mM) on ferret papillary muscle. The intracellular Ca2+ concentration ( [Ca2+]i) was measured from the light emitted by the photoprotein aequorin, which had previously been microinjected into superficial cells. Isometric tension was measured simultaneously. The rapid application of caffeine produced a transient increase of [Ca2+]i, which decayed spontaneously within 2-3 s and was accompanied by a transient contracture. The removal of extracellular Na+ or an increase in the concentration of intracellular Na+ (produced by strophanthidin) increased the magnitude of the caffeine response. Cessation of stimulation for several minutes or stimulation at low rates decreased the magnitude of the stimulated twitch and Ca2+ transient. These maneuvers also decreased the size of the caffeine response. These results are consistent with the hypothesis that the caffeine-releasable pool of Ca2+ (sarcoplasmic reticulum) is modulated by maneuvers that affect contraction. Ryanodine (10 microM) decreased the magnitude of the caffeine response as well as that of the stimulated twitch. In contrast, the rapid removal of external Ca2+ abolished the systolic Ca2+ transient within 5 s, but had no effect on the caffeine response. From this we conclude that the abolition of twitch by Ca2+-free solutions is not due to depletion of the sarcoplasmic reticulum of Ca2+, but may be due to a requirement of Ca2+ entry into the cell to trigger Ca2+ release from the sarcoplasmic reticulum. The Rockefeller University Press 1988-09-01 /pmc/articles/PMC2228902/ /pubmed/3225553 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title_full Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title_fullStr Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title_full_unstemmed Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title_short Effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
title_sort effects of rapid application of caffeine on intracellular calcium concentration in ferret papillary muscles
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228902/
https://www.ncbi.nlm.nih.gov/pubmed/3225553