Cargando…

Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers

Batrachotoxin (BTX)-activated Na+ channels from rabbit skeletal muscle were incorporated into planar lipid bilayers. These channels appear to open most of the time at voltages greater than -60 mV. Local anesthetics, including QX-314, bupivacaine, and cocaine when applied internally, induce different...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228921/
https://www.ncbi.nlm.nih.gov/pubmed/2851029
_version_ 1782150006992535552
collection PubMed
description Batrachotoxin (BTX)-activated Na+ channels from rabbit skeletal muscle were incorporated into planar lipid bilayers. These channels appear to open most of the time at voltages greater than -60 mV. Local anesthetics, including QX-314, bupivacaine, and cocaine when applied internally, induce different durations of channel closures and can be characterized as "fast" (mean closed duration less than 10 ms at +50 mV), "intermediate" (approximately 80 ms), and "slow" (approximately 400 ms) blockers, respectively. The action of these local anesthetics on the Na+ channel is voltage dependent; larger depolarizations give rise to stronger binding interactions. Both the dose-response curve and the kinetics of the cocaine-induced closures indicate that there is a single class of cocaine-binding site. QX-314, though a quaternary-amine local anesthetic, apparently competes with the same binding site. External cocaine or bupivacaine application is almost as effective as internal application, whereas external QX-314 is ineffective. Interestingly, external Na+ ions reduce the cocaine binding affinity drastically, whereas internal Na+ ions have little effect. Both the cocaine association and dissociation rate constants are altered when external Na+ ion concentrations are raised. We conclude that (a) one cocaine molecule closes one BTX-activated Na+ channel in an all-or-none manner, (b) the binding affinity of cocaine is voltage sensitive, (c) this cocaine binding site can be reached by a hydrophilic pathway through internal surface and by a hydrophobic pathway through bilayer membrane, and (d) that this binding site interacts indirectly with the Na+ ions. A direct interaction between the receptor and Na+ ions seems minimal.
format Text
id pubmed-2228921
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22289212008-04-23 Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers J Gen Physiol Articles Batrachotoxin (BTX)-activated Na+ channels from rabbit skeletal muscle were incorporated into planar lipid bilayers. These channels appear to open most of the time at voltages greater than -60 mV. Local anesthetics, including QX-314, bupivacaine, and cocaine when applied internally, induce different durations of channel closures and can be characterized as "fast" (mean closed duration less than 10 ms at +50 mV), "intermediate" (approximately 80 ms), and "slow" (approximately 400 ms) blockers, respectively. The action of these local anesthetics on the Na+ channel is voltage dependent; larger depolarizations give rise to stronger binding interactions. Both the dose-response curve and the kinetics of the cocaine-induced closures indicate that there is a single class of cocaine-binding site. QX-314, though a quaternary-amine local anesthetic, apparently competes with the same binding site. External cocaine or bupivacaine application is almost as effective as internal application, whereas external QX-314 is ineffective. Interestingly, external Na+ ions reduce the cocaine binding affinity drastically, whereas internal Na+ ions have little effect. Both the cocaine association and dissociation rate constants are altered when external Na+ ion concentrations are raised. We conclude that (a) one cocaine molecule closes one BTX-activated Na+ channel in an all-or-none manner, (b) the binding affinity of cocaine is voltage sensitive, (c) this cocaine binding site can be reached by a hydrophilic pathway through internal surface and by a hydrophobic pathway through bilayer membrane, and (d) that this binding site interacts indirectly with the Na+ ions. A direct interaction between the receptor and Na+ ions seems minimal. The Rockefeller University Press 1988-12-01 /pmc/articles/PMC2228921/ /pubmed/2851029 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title_full Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title_fullStr Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title_full_unstemmed Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title_short Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers
title_sort cocaine-induced closures of single batrachotoxin-activated na+ channels in planar lipid bilayers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228921/
https://www.ncbi.nlm.nih.gov/pubmed/2851029