Cargando…
Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology
The calcium current of bullfrog sympathetic neurons activates and deactivates rapidly (tau less than 3 ms). For brief depolarizations, the current can be fit reasonably well by a Hodgkin-Huxley-type model with a single gating particle of charge +3. With 2 mM Ca2+ as the charge carrier, half-maximal...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228934/ https://www.ncbi.nlm.nih.gov/pubmed/2478659 |
Sumario: | The calcium current of bullfrog sympathetic neurons activates and deactivates rapidly (tau less than 3 ms). For brief depolarizations, the current can be fit reasonably well by a Hodgkin-Huxley-type model with a single gating particle of charge +3. With 2 mM Ca2+ as the charge carrier, half-maximal activation occurs at approximately -5 mV, near the voltage where activation and deactivation are slowest. When extracellular divalent ion concentrations are reduced, monovalent ions (e.g., Na+ and methylammonium) produce kinetically similar inward currents. Current carried by Ba2+ is blocked by Cd2+ at micromolar concentrations, and by 100 nM omega-conotoxin. Commercially available saxitoxin blocks the current, but different batches have quantitatively different potency. The dihydropyridine agonist Bay K 8644 induces a slight shift in activation kinetics to more negative voltages, with little effect on the peak current. Nifedipine at least partially reverses the effect of Bay K 8644, but has little effect on its own. Muscarinic agonists and other ligands that inhibit the M-type potassium current of frog sympathetic neurons have weak inhibitory effects on the calcium current as well. One interpretation of these results is that the N-type calcium current predominates in these cells, with a minor contribution of L-type current. |
---|