Cargando…

Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells

It has been shown that the addition of a beta-adrenergic catecholamine to a trout red blood cell suspension induces a 60-100-fold increase of sodium permeability resulting from the activation of a cAMP-dependent Na+/H+ antiport. Subsequent addition of propranolol almost instantaneously reduces the i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228936/
https://www.ncbi.nlm.nih.gov/pubmed/2552001
_version_ 1782150010611171328
collection PubMed
description It has been shown that the addition of a beta-adrenergic catecholamine to a trout red blood cell suspension induces a 60-100-fold increase of sodium permeability resulting from the activation of a cAMP-dependent Na+/H+ antiport. Subsequent addition of propranolol almost instantaneously reduces the intracellular cAMP concentration, and thus the Na permeability, to their basal values (Mahe et al., 1985). If glutaraldehyde (0.06-0.1%) is added when the Na+/H+ exchanger is activated after hormonal stimulation, addition of propranolol no longer inhibits Na permeability: once activated and fixed by glutaraldehyde, the cAMP dependence disappears. Glutaraldehyde alone causes a rapid decrease in the cellular cAMP concentration. In its fixed state the antiporter is fully amiloride sensitive. The switching on of the Na+/H+ exchange by cAMP is rapidly (2 min) followed by acute but progressive desensitization of the exchanger (Garcia-Romeu et al., 1988). The desensitization depends on the concentration of external sodium, being maximal at a normal Na concentration (145 mM) and nonexistent at a low Na concentration (20 mM). If glutaraldehyde is added after activation in nondesensitizing conditions (20 mM Na), transfer to a Na-rich medium induces only a very slight desensitization: thus the fixative can "freeze" the exchanger in the nondesensitizing conformation. NO3- inhibits the activity of the cAMP-dependent Na+/H+ antiporter of the trout red blood cell (Borgese et al., 1986). If glutaraldehyde is added when the cells are activated by cAMP in a chloride-containing medium, the activity of the exchanger is no longer inhibited when Cl- is replaced by NO3-. Conversely, after fixation in NO3- medium replacement of NO3- by Cl- has very little stimulatory effect. This indicates that the anion dependence is not a specific requirement for the exchange process but that the anion environment is critical for the switching on of the Na+/H+ exchanger and for the maintenance of its activated configuration.
format Text
id pubmed-2228936
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22289362008-04-23 Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells J Gen Physiol Articles It has been shown that the addition of a beta-adrenergic catecholamine to a trout red blood cell suspension induces a 60-100-fold increase of sodium permeability resulting from the activation of a cAMP-dependent Na+/H+ antiport. Subsequent addition of propranolol almost instantaneously reduces the intracellular cAMP concentration, and thus the Na permeability, to their basal values (Mahe et al., 1985). If glutaraldehyde (0.06-0.1%) is added when the Na+/H+ exchanger is activated after hormonal stimulation, addition of propranolol no longer inhibits Na permeability: once activated and fixed by glutaraldehyde, the cAMP dependence disappears. Glutaraldehyde alone causes a rapid decrease in the cellular cAMP concentration. In its fixed state the antiporter is fully amiloride sensitive. The switching on of the Na+/H+ exchange by cAMP is rapidly (2 min) followed by acute but progressive desensitization of the exchanger (Garcia-Romeu et al., 1988). The desensitization depends on the concentration of external sodium, being maximal at a normal Na concentration (145 mM) and nonexistent at a low Na concentration (20 mM). If glutaraldehyde is added after activation in nondesensitizing conditions (20 mM Na), transfer to a Na-rich medium induces only a very slight desensitization: thus the fixative can "freeze" the exchanger in the nondesensitizing conformation. NO3- inhibits the activity of the cAMP-dependent Na+/H+ antiporter of the trout red blood cell (Borgese et al., 1986). If glutaraldehyde is added when the cells are activated by cAMP in a chloride-containing medium, the activity of the exchanger is no longer inhibited when Cl- is replaced by NO3-. Conversely, after fixation in NO3- medium replacement of NO3- by Cl- has very little stimulatory effect. This indicates that the anion dependence is not a specific requirement for the exchange process but that the anion environment is critical for the switching on of the Na+/H+ exchanger and for the maintenance of its activated configuration. The Rockefeller University Press 1989-08-01 /pmc/articles/PMC2228936/ /pubmed/2552001 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title_full Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title_fullStr Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title_full_unstemmed Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title_short Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells
title_sort glutaraldehyde fixation of the camp-dependent na+/h+ exchanger in trout red cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228936/
https://www.ncbi.nlm.nih.gov/pubmed/2552001